调幅

更新时间:2024-09-06 18:35

使载波的振幅按照所需传送信号的变化规律而变化,但频率保持不变的调制方法。调幅在有线电或无线电通信和广播中应用甚广。调幅使高频载波的振幅随信号改变的调制(AM)。其中,载波信号的振幅随着调制信号的某种特征的变换而变化。例如,0或1分别对应于无载波或有载波输出,电视的图像信号使用调幅。调频的抗干扰能力强,失真小,但服务半径小。

简介

调幅(Amplitude Modulation,AM)。调幅也就是通常说的中波,范围在530---1600KHz。调幅是用声音的高低变为幅度的变化的电信号。传输距离较远,但受天气因素影响较大,适合省际电台的广播。早期VHF频段的移动通信电台大都采用调幅方式,由于信道衰落会使模拟调幅产生附加调幅,造成失真,在传输的过程中也很容易被窃听,目前已很少采用。目前在简单通信设备中还有采用,如收音机中的AM波段就是调幅波,音质和FM波段调频波相比较差。

分类

振幅调制可分为普通调幅(AM),双边带调幅(DSB-AM),单边带调幅(SSB-AM)与残留边带调幅(VSB-AM)几种不同方式。

双边带调幅

双边带调幅信号中仅包含两个边频,无载波分量,其频带宽度仍为调制信号频率的2倍。

单边带调幅

单边带调幅信号中仅包含一个边频。

残留边带调幅

残留边带调幅是指信号发送信号中包括一个完整边带、载波及另一个边带的小部分的调幅方法。

波形及表达式

普通调幅信号的波形及表达式

设载波uc(t)的表达式和调制信号uΩ(t)的表达式分别为:

根据调幅的定义,当载波的振幅值随调制信号的大小作线性变化时,即为调幅信号,则已调波的波形如上图(c)所示,图(a)、(b)则分别为调制信号和载波的波形。由图可见,已调幅波振幅变化的包络形状与调制信号的变化规律相同,而其包络内的高频振荡频率仍与载波频率相同,表明已调幅波实际上是一个高频信号。可见,调幅过程只是改变载波的振幅,使载波振幅与调制信号成线性关系,即使Ucm变为Ucm+KaUΩmcosΩt,据此,可以写出已调幅波表达式为:

Ma称为调幅系数,Umax表示调幅波包络的最大值,Umin表示调幅波包络的最小值。Ma表明载波振幅受调制控制的程度,一般要求0≤Ma≤1,以便调幅波的包络能正确地表现出调制信号的变化。Ma>1的情况称为过调制, 下图所示为不同Ma时的已调波波形。

为了分析调幅信号所包含的频率成分,可将式(4-3)按三角函数公式展开,得

可见,在已调波中包含三个频率成分:ωc、ωc+Ω和ωc-Ω。ωc+Ω称为上边频,ωc-Ω称为下边频。由此而得到调幅波的频谱如下图所示。

由调幅波的频谱可得,调幅波的频带宽度为 BW=2F,式中,F为调制频率。

(1)若调制信号为复杂的多频信号,则其频谱如下图所示。

例如语音信号的频率范围为300~3400Hz,则语音信号的调幅波带宽为2× 3400=6800Hz。观察调幅波的频谱发现,无论是单音频调制信号还是复杂的调制信号,其调制过程均为频谱的线性搬移过程,即将调制信号的频谱不失真地搬移到载频的两旁。因此,调幅称为线性调制。调幅电路则属于频谱的线性搬移电路。

(2)若调制信号为单频余弦信号,负载电阻为RL,则已调波的功率主要有以下几种。

1.载波功率

2.上、下边频功率

3.总平均功率

4.最大瞬时功率

产生和解调方法

普通调幅信号的产生和解调方法

产生

普通调幅信号的产生可将调制信号与直流相加,再与载波信号相乘,即可实现普通调幅。可采用低电平调幅方法和高电平调幅方法。

解调方法

(1)包络检波

利用普通调幅信号的包络反映调制信号波形变化这一特点,如能包络提取出来,就可以恢复原来的调制信号。

(2)同步检波

同步检波必须采用一个与发射端载波同频率同相的信号,这个信号称为同步信号。

注意:双边带调幅、单边带调幅和残留边带调幅只能采用同步检波。

调幅电路

调幅电路原理主要分为两类:高电平调幅电路和低电平调幅电路,具体如下:

高电平调幅

高电平调幅要求电路的输出功率足够大。电路在调幅的同时,还进行功率放大。调制过程通常是在丙类放大级进行的。根据调制信号控制的电极不同,调制方法主要有集电极调幅、基极调幅、发射极调幅。

1、集电极调幅

(1)集电极调幅电路的特点是:

低频调制信号加到集电极回路,B1、B2为高频变压器;B3为低频变压器。低频调制信号uΩ(t)与丙类放大器的直流电源相串联,因此放大器的有效集电极电源电压Vcc(t)等于两个电压之和,它随调制信号变化而变化。图中的电容Cb、C`是高频旁路电容,C`的作用是避免高频电流通过调制变压器B3的次级线圈以及直流电源,因此它对高频相当于短路,而对调制信号频率应相当于开路.

对于丙类高频功率故大器,当基极偏置Vbb、高频激励信号电压振幅Ubm和集电极回路阻抗Rp不变,只改变集电极有效电源电压时,集电极电流脉冲在欠压区可认为不变。而在过压区,集电极电流脉冲幅度将随集电极有效电源电压的变化而变。因此,集电极调幅必须工作于过压区。

(2)集电极调幅只能产生普通调幅波。

优点是:调幅线性比基极调幅好。此外,由于集电极调幅 始终工作在临界和弱过压区,故效率比较高。

缺点是:调制信号接在集电极回路中供给的功率比较大。

2、基极调幅

基极调幅电路的特点是调制信号加在基极回路。图中C1、C3为高频旁路电容;C2为低频旁路电容;B1为高频变压器;B2为低频变压器;LC回路为带通滤波器。应保证回路调谐于ωC,通带为2Ω。

基极调幅的原理是利用丙类功率放大器在电源电压Vcc、输入信号振幅Ubm、谐振电阻Rp不变的条件下,在欠压区改变Vbb,其输出电流随Vbb接近线性变化这一特性来实现调幅的。

基极调幅的优点是:由于调制信号接在基极回路,对于调制信号只需很小的功率。

缺点是:效率较低,调制线性不如集电极调幅。

低电平调幅电路

(1) 模拟乘法器调幅电路

作用:实现两个模拟信号相乘

符号:

电路图:

(2)二极管调制电路

二极管调制电路包括单二极管调制电路、二极管平衡电路、二极管双平衡调制电路等。

1)单二极管电路

单二极管电路如下图所示。

当二极管两端的电压UD大于二极管的导通电压时,二极管导通,流过二极管的电流与加在两端的电压成正比;当二极管两端的电压UD小于二极管的导通电压时,二极管截止,电流为0;二极管等效为一个受控开关。控制电压为二极管两端电压UD。

当Ucm>>UΩm且Ucm为大信号(>0.5V)时,可进一步认为二极管的通断主要由Uc控制。一般情况下二极管的开启电压UP较小,有Ucm>>UP,可令UP近似为0或在电路中加一固定偏置电压来抵消UP。忽略输出电压的反作用,用开关函数分析法则可得到:

可得到相应的频谱图如下:

将它通过以ωc为中心、通频带2Ω为的带通滤波器后,可得到调幅波。

这里的分析忽略了输出电压的反作用。是因为输出电压的相对于Uc而言很小。若考虑反作用,输出电压对二极管两端的电压影响不大,频率分量不会变化,可能使输出信号幅度降低(rDàrD+RL)。

另外,如果不满足大信号条件,不能用开关函数分析法或线性时变分析法,但可用幂级数分析法,可以知道该电路仍然可以完成频谱的线性搬移功能。

2)二极管平衡调制器

在单二极管电路中,由于工作在线性时变工作状态,因而二极管产生的频率分量大大减少了,但在产生的频率分量中,仍然有不少不必要的频率分量,因此有必要进一步减少一些频率分量。

二极管平衡电路可以满足这一要求。其原理电路如下图。

该电路由两个性能一致的二极管及中心抽头变压器Tr1、Tr2接成平衡电路。电路上下两部分完全一样。控制信号(载波信号)加在两个变压器的中心抽头处,输入信号(调制信号)接在输入变压器,即载波信号同相加到D1、D2上;调制信号u2反相加到D1、D2上输出变压器接滤波器,用以滤除无用的频率分量。从Tr2次向右看的负载电阻为RL。则该电路可等效成如下的原理电路形式。

由于加到两个二极管的控制电压是同相的,利用开关函数分析法,可得到负载上总电流为:

其频谱图如下:

与单二极管电路相比,i含有频谱:Ω、ω1±Ω、3ω1±Ω、……,经中心角频率为ωc的3dB带宽为2Ω 的LC带通滤波器后,可在负载RL得到频谱ωc±Ω 电压分量,可见是实现了DSB调制。这是不难理解的,由于控制电压uC同相地加在两个二极管的两端。当电路完全对称时,两个相等的ωC分量互相抵消,因此在输出中不再有ωC及其谐波分量。即在输出中,不必要的频率分量进一步减少了。(DSB调幅)

3)二极管双平衡调制器——二极管环形调制器

在二极管平衡调制电路中,通过两个单二极管电路的上下对称平衡接法,大大减少了不必要的频率分量,同时使有用频率分量的幅度增加了一倍。但依然有不必要的频率分量如调制信号的频率分量存在,且所得到的有用频率分量的幅度依然不是很大。那么,是否可以通过再平衡的方法进一步减少不必要的频率分量且让有用分量的幅度再增加一倍呢?

二极管双平衡电路可以满足这一要求。其原理电路如图。

该电路由两个双二极管平衡电路组成,由于四个二极管环接形成环路,所以该电路又称二极管环形调制器。载波从变压器T1接入,调制信号接到两个变压器的中心抽头间,变压器T2输出已调信号。

其分析条件与单二极管电路和二极管平衡电路相同。

各二极管工作情况如下图:

则可得:

其频谱图如下:

i中含有频谱:ωc±Ω ,3ωc±Ω……经中心为ωc、3dB带宽为2Ω的带通滤波器后,在负载RL 上可得到频谱ωc±Ω电压频谱分量,实现了DSB调制。

从频谱图中可以看出,环形电路在平衡电路的基础上,又消除了低频调制信号的频率分量,且输出的DSB信号幅度为平衡电路的二倍。其无调制信号分量是两次平衡抵消的结果,每个平衡电路自身抵消载波及谐波分量,两个平衡电路抵消调制信号分量,所以环形电路的性能更接近理想相乘器。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}