更新时间:2024-04-03 15:54
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
Dijkstra算法一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
1.首先,引入一个辅助数组(vector)D,它的每个元素D 表示当前所找到的从起始点 (即源点 )到其它每个顶点 的长度。
例如,D[3] = 2表示从起始点到顶点3的路径相对最小长度为2。这里强调相对就是说在算法执行过程中D的值是在不断逼近最终结果但在过程中不一定就等于长度。
2.D的初始状态为:若从 到 有弧(即从 到 存在连接边),则D 为弧上的权值(即为从 到 的边的权值);否则置D 为∞。
显然,长度为 D = Min{ D | ∈V } 的路径就是从 出发到顶点 的长度最短的一条路径,此路径为( )。
3.那么,下一条长度次短的是哪一条呢?也就是找到从源点 到下一个顶点的最短路径长度所对应的顶点,且这条最短路径长度仅次于从源点 到顶点 的最短路径长度。
假设该次短路径的终点是 ,则可想而知,这条路径要么是( ),或者是( )。它的长度或者是从 到 的弧上的权值,或者是D 加上从 到 的弧上的权值。
4.一般情况下,假设S为已求得的从源点 出发的最短路径长度的顶点的集合,则可证明:下一条次最短路径(设其终点为 )要么是弧( ),或者是从源点 出发的中间只经过S中的顶点而最后到达顶点 的路径。
因此,下一条长度次短的的最短路径长度必是D = Min{ D | ∈V-S },其中D 要么是弧( )上的权值,要么是D ( ∈S)和弧( , )上的权值之和。
算法描述如下:
1)令arcs表示弧上的权值。若弧不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到的从 出发的的终点的集合,初始状态为空集。那么,从 出发到图上其余各顶点 可能达到的长度的初值为D=arcs[Locate Vex(G, )], ∈V;
2)选择 ,使得D =Min{ D | ∈V-S } ;
3)修改从 出发的到集合V-S中任一顶点 的最短路径长度。
在有向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短值。
按路径长度递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和。
(反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在,d(V0,Vi)为弧上的权值
若不存在,d(V0,Vi)为∞
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止
pascal语言
下面是该算法的Pascal程序
主程序调用:求长度:初始化t,然后dijkstra(qi,t,c,d)
求路径:make(m,d,e) ,m是终点
C语言
下面是该算法的C语言实现
大学经典教材<<数据结构>>(C语言版 严蔚敏 吴为民 编著) 中该算法的实现
思考
该算法复杂度为n^2,我们可以发现,如果边数远小于n^2,对此可以考虑用堆这种数据结构进行优化,取出最短路径的复杂度降为O(1);每次调整的复杂度降为O(elogn);e为该点的边数,所以复杂度降为O((m+n)logn)。
实现
1. 将源点加入堆,并调整堆。
2. 选出堆顶元素u(即代价最小的元素),从堆中删除,并对堆进行调整。
3. 处理与u相邻的,未被访问过的,满足三角不等式的顶点
1):若该点在堆里,更新距离,并调整该元素在堆中的位置。
2):若该点不在堆里,加入堆,更新堆。
4. 若取到的u为终点,结束算法;否则重复步骤2、3。
Java代码