更新时间:2024-06-04 09:15
TD-SCDMA是英文Time Division-Synchronous Code Division Multiple Access(时分同步码分多址)的简称,它是以我国知识产权为主的、被国际上广泛接受和认可的无线通信国际标准,也被国际电信联盟ITU正式列为第三代移动通信空口技术规范之一。后来,为了在移动网络基础上以最大的灵活性提供高速数据业务,第三代移动通信又引入了HSPA+技术。
TD-SCDMA的中文含义为时分复用同步码分多址接入,是由中国第一次提出、在无线传输技术(RTT)的基础上完成并已正式成为被ITU接纳的国际移动通信标准。这是中国移动通信界的一次创举和对国际移动通信行业的贡献,也是中国在移动通信领域取得的前所未有的突破。
TD-SCDMA中的TD指时分复用,也就是指在TD-SCDMA系统中单用户在同一时刻双向通信(收发)的方式是TDD(时分双工),在相同的频带内在时域上划分不同的时段(时隙)给上、下行进行双工通信,可以方便地实现上、下行链路间的灵活切换。例如根据不同的业务对上、下行资源需求的不同来确定上、下行链路间的时隙分配转换点,进而实现高效率地承载所有3G对称和非对称业务。与FDD模式相比,TDD可以运行在不成对的射频频谱上,因此在当前复杂的频谱分配情况下它具有非常大的优势。TD-SCDMA通过最佳自适应资源的分配和最佳频谱效率,可支持速率从8kb/s到2Mb/s以及更高速率的语音、视频电话、互联网等各种3G业务。
移动通信的主要目的是实现任何时间、任何地点和任何通信对象之间的通信。移动通信的发展始于20世纪20年代在军事及某些特殊领域的使用,到20世纪40年代才逐步向民用扩展,而最近十多年来才是移动通信真正蓬勃发展的时期。移动通信的发展过程大致可分为三个阶段,这三阶段对应的技术也被相应划分为三代,如下图移动通信发展史所示。
TD-SCDMA的发展始于1998年初,当时在国家邮电部的直接领导下,由原电信科学技术研究院组织队伍在 SCDMA技术的基础上,研究和起草符合IMT-2000要求的TDSCDMA建议草案。该标准草案以智能天线、同步码分多址、接力切换、时分双工为主要特点,于ITU征集IMT-2000第三代移动通信无线传输技术候选方案的截止日1998年6月30日提交到ITU,从而成为IMT2000的15个候选方案之一。ITU综合了各评估组的评估结果。在1999年11月举行的赫尔辛基ITU-RTG8/1第18次会议上和2000年5月举行的伊斯坦布尔ITU-R全会上,TD-SCDMA被正式接纳为CDMATDD制式的方案之中国无线通信标准研究组(CWTS)作为代表中国的区域性标准化组织,自1999年5月加入3GPP后,经过4个月的充分准备,与项目协调组(3 GPPPCG)、技术规范组(TSG)进行了大量协调工作,在同年9月向3GPP建议将TD- SCDMA纳入3GPP标准规范的工作内容。1999年12月在法国尼斯举行的3GPP会议上,提案被无线接入网(3 GPPTSGRAN)全会所接受,正式确定将TD- SCDMA纳入 Release200(后拆分为R4和R5)的工作计划中,并将 TD-SCDMA简称为即低码片速率TDD方案(Low Code rate, LCRTDD)。
经过一年多时间,经历了几十次工作组会议几百篇提交文稿的讨论,在2001年3月美国棕榈泉的RAN全会上,包含 TD-SCDMA标准在内的3GPPR4版本规范正式发布,TDSCDMA在3GPP中的融合工作达到了第一个目标。
至此,TD- SCDMA不论在形式上还是实质上,都已在国际上被广大运营商、设备制造商所认可和接受,形成了真正的国际标准。
在TD-SCDMA系统中,用到了以下几种主要关键技术:
(1)时分双工方式(Time Division Duplexing);
(2)联合检测(Joint Detection);
(3)智能天线(Smart Antenna);
(4)上行同步(Uplink Synchronous);
(5)软件无线电(Soft Radio);
(6)动态信道分配(Dynamic Channel Allocation);
(7)功率控制(Power control);
(8)接力切换(Baton Handover);
(9)高速下行分组接入技术(High Speed Downlink Packet Access)。
第三代移动通信系统的空中接口即UE和网络之间的Uu接口,由物理层(L1)、数据链路层(L2)和网络层(L3)组成。所有的物理信道都采用四层结构:系统帧(0~4095)、无线帧(10ms)、子帧(5ms)和时隙/码。依据不同的资源分配方案,子帧或时隙/码的配置结构可能有所不同。所有物理信道的每个时隙间都需要有保护间隔。在TDMA系统中,使用时隙在时域和码域上区分不同用户信号。
TD-SCDMA系统占用15MHz频谱,其中2010MHz~2025MHz为一阶段频段,干扰小,划分为3个5MHz的频段。每个载频占用带宽为1.6MHz,因此对于5M、10M、15M带宽,分别可支持3、6、9个载频,可以同频组网或异频组网。同频组网频谱利用率高,邻小区同频干扰大,需损失一定容量换取性能改善;异频组网能有效减少邻小区同频干扰的影响,改善系统性能,但频谱利用率较低,需要更多的频率资源。目前TD系统的频率规划多采用N频点方案,即每扇区配置N个载波,其中包含一个主载频、N-1个辅载频。公共控制信道均配置于主载频,辅载频配置业务信道。主载频和辅助载频使用相同的扰码和mi-damble码。N频点方案可以降低系统干扰,提高系统容量,改善系统同频组网性能。
TD-SCDMA系统使用具有对应关系的下行导频码、上行导频码、扰码和Midamble码。TD-SCDMA系统128个基本扰码按编号顺序分为32个组,每组4个,每个基本扰码用于下行UE区分不同的小区。在码规划中,首先确定每个逻辑小区下行导频码在32个可选码组中的对应序号,然后根据所处的序列位置在对应的4个扰码中为小区选择一个合适的扰码。基本Midamble码与扰码一一对应,可随着扰码的确定而确定。相比于WCDMA的512个码字,TD-SCDMA系统码资源相对较少,因此TD扰码规划较WCDMA网络要求更高。
TD-SCDMA系统可以灵活配置上下行时隙转换点,来适应不同业务上下行流量的不对称性。合理配置上下行时隙转换点是提高系统频谱利用率的有效手段。在具体进行时隙比例规划时,可以根据业务发展状况灵活配置,根据上下行承载所占BRU比例进行时隙比例的计算。业务发展初期,适应语音业务上下对称的特点可采用3∶3(上行∶下行)的对称时隙结构;数据业务进一步发展时,可采用2∶4或1∶5的时隙结构。
时隙灵活配置在提高资源利用率的同时,可能带来相邻小区之间由于上下行时隙分配比例不一致造成的干扰。因此在网络规划与组网时,可对上下行时隙比例的分配采取如下原则,对干扰进行适当规避:
⑴尽量避免任意分配上下行时隙比例,而应按照不同区域上下行业务流量要求,对大片区域采用统一的上下行时隙比例,使得这种干扰只在两个不同区域交界处发生;
⑵在不同时隙比例的交界处,对于上下行时隙交叠的时隙,上行时隙容量损失比下行时隙严重,所能承载的用户较少,因此,不同时隙比例的交界处应选在有较多上行容量空余的区域;
⑶应该避免相邻基站上下行时隙比例差异过大(如1∶5和5∶1相邻);
⑷上下行时隙比例通常作为小区参数来配置,对于同一个扇区下的所有小区的上下行时隙比例应一致,同一基站内的多个扇区的时隙比例也最好相同。特殊情况下可以通过动态信道调整、空间隔离、避免基站天线正对和牺牲容量等方式来规避干扰。
网络规划是无线网络建设运营前的关键步骤,主要根据无线传播环境、业务、社会等多方面因素,从覆盖、容量、质量三方面对网络进行宏观配置。TD-SCDMA系统采用时分码分结合多址方式、智能天线、联合检测、接力切换、动态信道分配等一系列新型关键技术和无线资源算法,提高系统性能,为网络规划带来很多新特点,如不同业务的覆盖具有一致性、小区呼吸效应不明显、上下行信道配置灵活等。
TD-SCDMA系统覆盖性能主要取决于两方面,一是上下行时隙转换保护长度对覆盖的限制,二是链路预算。TD-SCDMA在下行导频时隙和上行导频时隙之间有96个码片宽的保护带,限制了小区覆盖范围不能超过11.25km。如果通过DCA锁住第一个上行时隙,基站理论覆盖距离可进一步扩大。链路预算是TD-SCDMA网络覆盖规划的关键,分为上行和下行。下行链路预算复杂,且一般基站的发射功率远大于手机发射功率,因此一般通过计算上行链路来确定小区覆盖半径,然后从覆盖受限方面估计出基站数目。
TD-SCDMA链路预算指标受其独特的帧结构、TDD双工方式、智能天线、联合检测和接力切换等关键技术影响。根据TD-SCDMA独特的帧结构,要分别考虑导频信道、BCH信道等公共信道和业务信道的功率分配、干扰储备和天线增益。
实际工程设计中,TD-SCDMA系统的链路预算应根据具体无线网络传播环境、网络设计目标、厂家设备性能、具体工程参数设定等进行具体调整。
TD-SCDMA系统采用多种关键技术使得小区内和小区外的干扰基本被抑制,因此具有更大的频谱利用率和容量。TD-SCDMA系统容量特点主要有:各种业务基本同径覆盖、小区呼吸效应不明显、接力切换没有宏分集、切换比较容易控制、上下行容量与时隙比例和最大发射功率有关。
多种干扰抑制技术的采用,使TD-SCDMA系统中的容量受限呈现出多样性(即功率受限、码资源受限和干扰受限),但以码资源受限为主。在密集城区和复杂环境中会表现为干扰受限,在一般城区、郊区、农村等环境和区域中表现为码资源受限,因此TD-SCDMA系统容量规划应针对不同环境区别对待。目前TD系统的容量估算方法主要有以下三种:公式法、BRU法和坎贝尔方法。BRU法和坎贝尔方法引入了基本资源单元、业务资源强度等概念,适用于TD-SCDMA这种资源受限系统,不适用于WCDMA这类干扰受限系统。WCDMA系统容量规划一般采用基于干扰受限的公式法,但计算公式和TD-SCDMA有所不同。