更新时间:2024-06-07 15:36
USB3.0 —— 也被认为是SuperSpeedUSB——为那些与PC或音频/高频设备相连接的各种设备提供了一个标准接口。只是个硬件设备,计算机内只有安装USB3.0相关的硬件设备后才可以使用USB3.0相关的功能!从键盘到高吞吐量磁盘驱动器,各种器件都能够采用这种低成本接口进行平稳运行的即插即用连接,用户基本不用花太多心思在上面。新的USB 3.0在保持与USB 2.0的兼容性的同时,还提供了下面的几项增强功能:
● 极大提高了带宽——高达5Gbps全双工(USB2.0则为480Mbps半双工)。
● 实现了更好的电源管理。
● 能够使主机更快地识别器件。
● 新的协议使得数据处理的效率更高。
USB3.0可以在存储器件所限定的存储速率下传输大容量文件(如HD电影)。例如,一个采用USB3.0的闪存驱动器可以在15秒钟将1GB的数据转移到一个主机,而USB 2.0则需要43秒。
受到消费类电子器件不断增加地分辨率和存储性能需求的推动,希望通过宽带互联网连接能够实现更宽的媒体应用,因此,用户需要更快速的传输性能,以简化下载、存储以及对于多媒体的大量内容的共享。USB 3.0在为消费者提供其所需的简易连接性方面起到了至关重要的作用。
当用于消费类器件时,USB3.0将解决USB 2.0无法识别无电池器件的问题。主机能够通过USB 3.0缓慢降低电流,从而识别这些器件,如电池已经坏掉的手机。
对于系统和ASIC开发者而言,USB3.0芯片和IP的广泛的实用性保证了每个设计要求都可以及时得到满足。这种全方位的支持对于像USB3.0这样的标准而言特别重要,因为速度、高级协议和各种电缆长度(从几英寸到几米)使得设计和标准兼容性成为一项挑战。
SATA与USB几年来,在争相成为外部存储器接口的各种器件标准中,USB、eSATA和Firewire在个人计算机领域,都各自取得了多个瞩目的成绩。在这一点上,串行ATA(SATA)在消费类PC的内部驱动连接性上,取代了所有其它接口。尽管被称为CFast的新型Compactflash版本将基于SATA构建,但较早的并行ATA(PATA)在将CompactFlash作为存储媒介的工业和嵌入式应用中仍在继续使用。
自从2004年推出以来,eSATA在外部存储器应用方面已经向USB 2.0和FireWire提出了挑战。eSATA在SATA内部驱动器所支持的相同速率下,与外部器件互相传输数据。值得一提的是,eSATA接口可以支持高达3Gbps的数据传输率。即使接照由编码所缩减的实际速率,eSATA的数据速率也完全足以用作最高速的硬盘驱动器,这种驱动器能够以12MB/秒的速度传输数据(约为90Mbps).
尽管eSATA仅用于存储器应用,但它的这些性能使其能够抢占USB 2.0和FireWire的市场份额。SATA的其他优势还包括低处理器成本。USB 3.0的性能显著优于eSATA和FireWire 800。在5Gbps全双工下,USB 3.0比可以达到800Mbps的全双工的eSATA和FireWire 800的速度更快。(注意,eSATA的3Gbps数据是单双工的,而USB 3.0所提供的是全双工的。尽管我们在这里无法详尽的说明,但仍需提请注意的是USB 3.0包括可选装置,用于传输无序数据,是用于磁盘驱动搜索的最佳选择。)
富士通的USB 3.0 —— SATA芯片解决方案
为了实现可以将SATA硬盘驱动器用于USB 3.0的简单方法,富士通推出了MB86C30A单芯片解决方案,用以将USB 3.0和基于SATA/ATA/ATAPI的大容量存储器进行桥接。这种桥接芯片将USB2.0和USB3.0的海量存储要求转移给SATA和ATA/ATAPI通信协议。
MB86C30A是世界首款USB 3.0从芯片,采用了富士通的高速串行I/O技术。
不久的将来,利用65nmCMOS技术构建的芯片,在采用高速USB规格方面,将实现更低的功耗和更大的灵活性。
富士通已经在“2009SuperSpeed USB开发者协商会上”展示了其USB 3.0从芯片,并证明了它具有行业最快的传输速率。
此芯片符合于2008年11月发布的USB 3.0规格1.0以及SATA规格2.6版本的要求。
芯片还符合USB Mass Storage 批量传输协议。图1显示了芯片的主要功能。USB 3.0标准的正式发布
由Intel、微软、惠普、德州仪器、NEC、ST-NXP等IT业界巨头组成的USB 3.0 Promoter Group 2008-11-18 宣布,该组织负责制定的新一代USB 3.0标准已经正式完成并公开发布。新规范提供了十倍于USB 2.0的传输速度和更高的节能效率,可广泛用于PC外围设备和消费电子产品。
该组织将与硬件厂商合作,共同开发支持USB 3.0标准的新硬件,不过实际产品上市还要等一段时间。
第一版USB1.0是在1996年出现的,速度只有12Mbps;两年后升级为USB1.1,速度没有任何改变,仅改变了技术细节,至今在部分旧设备上还能看到这种标准的接口;2000年4月起广泛使用的USB2.0推出,速度达到了480Mbps,是USB 1.1的四十倍;如今10个年头过去了,USB 2.0的速度早已经无法满足应用需要,USB 3.0也就应运而生,最大传输带宽高达5.0Gbps,也就是640MB/s,同时在使用A型的接口时向下兼容。IEEE组织也批准了新规范IEEE1394-2008,不过新版FireWire的传输速度只有3.2Gbps,相当于USB 3.0的60%多一点。难怪苹果等业界厂商普遍对该技术失去了兴趣。
USB 2.0基于半双工二线制总线,只能提供单向数据流传输,而USB 3.0采用了对偶单纯形四线制差分信号线,故而支持双向并发数据流传输,这也是新规范速度猛增的关键原因。
除此之外,USB 3.0还引入了新的电源管理机制,支持待机、休眠和暂停等状态。
这款新的超高速接口的实际传输速率大约是3.2Gbps(即320MB/S)。理论上的最高速率是5.0Gbps(即500MB/S)。
USB3.0 引入全双工数据传输。5根线路中2根用来发送数据,另2根用来接收数据,还有1根是地线。也就是说,USB 3.0可以同步全速地进行读写操作。以前的USB版本并不支持全双工数据传输。
USB 3.0标准要求USB3.0接口供电能力为1A,而USB 2.0为0.5A。
USB 3.0 并没有采用设备轮询,而是采用中断驱动协议。因此,在有中断请求数据传输之前,待机设备并不耗电。简而言之,USB 3.0支持待机、休眠和暂停等状态。
上述的规范也会体现在USB 3.0的物理外观上。但USB 3.0的线缆会更“厚”,这是因为USB 3.0的数据线比2.0的多了4根内部线。不过,这个插口是USB 3.0的缺陷。它包含了额外的连接设备。
Windows 10、Window8.1、Window8、Windows Vista、Windows 7 SP1和Linux(以及基于Linux的安卓)都支持USB 3.0。苹果最新发布的苹果Mac book air和Mac book pro也支持。对于XP系统,USB 3.0可以使用,但只有USB2.0的速率。
USB3.0与USB2.0外观区别,观察USB(本身)的插口和电脑上USB插口,中间的塑料片颜色:USB3.0——蓝色;USB2.0——黑色。当然,一些设备颜色区分并不规范,比如一些主控芯片支持的非原生usb3.0就有可能不是蓝色的,一些usb2.0的设备比如MP3,数据线等有可能是黑色或白色塑料片。
如不能通过颜色区分,也可以看接口针脚数。USB3.0相较于USB2.0多了几个针脚,在Type-A接口上,接口的里面多了5个针脚,Type-B接口则在接口上方多了一块。
从USB 1.1的12Mbps升级到USB 2.0的480Mbps,提升幅度达到了40倍,而从USB 2.0标准升级到USB 3.0标准仅为10倍,但这10倍速度的提升却有着很大的应用意义,既然USB 3.0的数据传输率达到了4.8Gbps,要远远高于其他传输标准,比如IEEE 1394的数据传输通常为400Mbps~3.2Gbps之间,而号称“USB移动硬盘终结者”的新一代eSATA标准也仅有3Gbps的数据传输率。
实际上并非如此,因为IEEE 1394、eSATA有着自己的应用定位,IEEE 1394标准,它的最大数据传输速率为3.2Gbps,在速度上落后于USB 3.0,但提供了点对点传输功能,这样不用依赖PC即可实现设备之间的数据传输,同时支持同步和异步传输模式,可以连接63个设备,可以同时传输数字视频及数字音频信号,并且在采集和回录过程中没有信号损失,使得IEEE1394接口更加适合多媒体设备(如DV机、采集卡),这些都是USB 3.0标准无可比拟的。总体来看IEEE 1394接口的应用更专业、更自由,不过正是由于这些专业性以及厂商的推广力度不够,IEEE 1394设备的普及度不高,通常是一个设备同时拥有IEEE 1394接口和USB接口。
对于eSATA标准,它实际上是SATA接口的扩展,也称为外置式SATA接口,支持即插即用,但在功能上有很大的局限性,首先不支持供电功能,而且必须配合主板上的eSATA接口使用,这意味着无法摆脱PC的使用限制,一般只适合移动硬盘、便捷DVD光驱及电视盒等设备使用,对于时下流行的消费数码电子设备,就显得无用武之地了,因而在USB 3.0标准推出之后,eSATA是面临竞争压力最大的传输标准。但仍然要注意,由于eSATA源自主板上的SATA芯片,所以具备了引导启动功能,也就是说,电脑连接eSATA硬盘或eSATA光驱可以启动系统,而这是USB硬盘、USB光驱实现起来比较麻烦的,这对于系统维护、服务器在DOS数据下进行数据交换及其重要,不过对于普通大众来说,eSATA的地位和发展或许就此终结。
USB2.0为各式各样的设备以及应用提供了充足的带宽,但是,随着高清视频、TB(1024GB)级存储设备、高达千万像素数码相机、大容量的手机以及便携媒体播放器的出现,更高的带宽和传输速度就成为了必须。
480Mbps的传输速度可能都已经不算快了,更何况没有哪个USB2.0设备能够达到这个理论上的最高限速。在实际应用中,能够达到320Mbps的平均速度就已经很不错了。
同样,其实USB3.0同样达不到5.0Gbps的理论值,若只能达到理论值的8成,那也是接近于USB2.0的10倍了。USB3.0的物理层采用8b/10b编码方式,这样算下来的理论速度也就4Gbps,实际速度还要扣除协议开销,在4Gbps基础上要再少点。
新的“Superspeed USB”将比现有的USB2.0速度快10倍,USB3.0规范已经进入最后的完成阶段。USB推广小组主席Jeff Ravencraft称,Superspeed USB的最高传输速度将是USB2.0的10倍,最低传输速度达到300Mb/s.他将给闪存产品带来更高的速度,使用固态硬盘,如果接口从USB2.0升级到3.0,那么就是螺旋桨飞机到喷气式飞机的飞跃。Superspeed USB的线缆和端口将采用向下兼容模式,intel已经弃用之前光纤互连的方式作为传输方式,据了解,此举是节约成本,而USB3.0的速度也达到了“令人满意的效果”,而无需在这方面深入开发。USB3.0的接口分为两部分,一部分采用和USB2.0一致的针脚;另外增加了一系列电气接口供USB3.0信号传输使用。已有不少USB3.0的产品问世、比如USB3.0的移动硬盘、U盘、读卡器,等等。
我们说的5Gb/s,指的是位(bit),而不是字节(Byte)。由于8位等于1字节,就像你拉一条4Mbps的网线,理论下载速度只能达到512KB/S一样。但是,USB3.0还有一个问题是:编码规则采用8/10的方法,存在2b的控制信号,所以USB 3.0的理论数据传输速率是5Gbps。
要达到5Gbps的理论速度,必须突破两个瓶颈:主板接口、存储介质。你兴冲冲跑到电脑城,买了个USB3.0的移动硬盘回来试,发现还是USB2.0的速度,这瓶颈很可能出在主板接口上。庆幸的是,Intel已经在最新的7系列芯片组中原生支持USB3.0,你也可以通过第三方USB3.0主控芯片来桥接出两个蓝色的USB3.0接口,从而解除主板速度瓶颈。
受限于硬盘的机械结构,主流的3.5寸7200转500G硬盘的内部传输速度不会超过150MB/S,2.5寸5400转500G移动硬盘的内部传输速度更低。所谓的USB 3.0优盘,速度瓶颈在于所采用的主控和FLASH芯片上。
抛开USB3.0的理论速度不谈,USB3.0接口产品的实际传输速度分别为:读速度为60MB/s到140MB/s,写速度为50MB/s到90MB/s。市场上很多所谓的USB3.0优盘、硬盘、其读速度比较快,但写速度可能很低。另外,如果移动硬盘是USB2.0接口,将其与PC机USB3.0接口连接传输数据,那么理论最大传输速率则是USB2.0的60MB/S。
2013年1月7日上午消息,USB3.0推广组织周日在美国消费电子展(CES)上宣布,第一批传输速率达到10Gbps的USB3.0设备将于2014年面市,此速度将较之现在的5Gbps快一倍之多。
USB 3.0之所以有“超速”的表现,完全得益于技术的改进。
相比USB 2.0接口,USB 3.0增加了更多并行模式的物理总线。
可以拿起身边的一根USB线,看看接口部分。
在原有4线结构(电源,地线,2条数据)的基础上,USB 3.0再增加了5条线路,用于接收和传输信号。
因此不管是线缆内还是接口上,总共有9条线路。
正是额外增加的4条(2对)线路提供了“SuperSpeed USB”所需带宽的支持,得以实现“超速”。
显然在USB 2.0上的2条(1对)线路,是不够用的。
此外,在信号传输的方法上仍然采用主机控制的方式,不过改为了异步传输。
USB 3.0利用了双向数据传输模式,而不再是USB 2.0时代的半双工模式。简单说,数据只需要朝一个方向流动就可以了,简化了等待引起的时间消耗。
其实USB 3.0并没有采取什么鲜有听闻的高深技术,却在理论上提升了10倍的带宽。也因此更具亲和力和友好性,一旦SuperSpeed USB产品问世,可以让更多的人轻松接受并且做出更出色的定制化产品。
“SuperSpeed USB”改进远不止在传输速率方面的提升。在USB 3.0中,设备和电脑主机之间如何更加融洽的配合,也被当作了一项重点研究的方向。在继承USB 2.0核心架构的基础上,如何利用双总线模式的优势,如何让用户能够直接的体验到USB 3.0比USB 2.0的先进,便成为了重点:
需要时能提供更多电力
USB 3.0能够提供50%—80%更多的电力支持那些需要更多电能驱动的设备,而那些通过USB来充电的设备,则预示着能够更快的完成充电。
新Powered-B接口由额外的2条线路组成,提供了高达1000毫安的电力支持。完全可以驱动无线USB适配器,而摆脱了传统USB适配器靠线缆连接的必要。通常有线USB设备需要连接到集线器或者是电脑本身上,而高电能支持下,就不需要在有“线”存在了。
不需要时就自动减少耗电
转换到USB 3.0,功耗也是要考虑的很重要的一个问题,因此有效的电源管理就很必要,可以保证设备的空闲的时候减少电力消耗。
大量的数据流传输需要更快的性能支持,同时传输的时候,空闲时设备可以转入到低功耗状态。甚至可以空下来去接收其他的指令,完成其他动作。
其实,在USB 3.0中也并不是所有的东西都更新换代了,比如线缆的长度。当在某些应用中需要尽可能高的吞吐量的时候,往往线缆依旧会成为瓶颈。虽然在USB 3.0规范中,没有明确指定USB线缆有多长,但是电缆材质和信号质量还是影响了传输的效果。因此在传输数百兆大数据流的时候,线缆长度最好不要超过3米。
另外,一些支持“SuperSpeed USB”的硬件产品,例如集线器(hub)可能要比USB 2.0的贵很多,这是主动供电集线器和被动供电的一个道理。因为一个真正意义上的“SuperSpeed hub”应该具备2类接口,一个用来扮演真正“SuperSpeed hub”的角色,另外一个则要扮演普通高速hub的角色。
网络上有一些非官方的言论谈到了USB 3.0可以使用光纤,其实这正是USB规范组织正在考虑的问题,也许会在下一个修正版本中推出,也许会让一些有能力的第三方公司来尝试一下。
Windows Vista/7/8/8.1/10
开源系统方面, Linux明确的表示支持USB 3.0,前提是扩展主控制器界面(xHCI)规范正式发布。非公开版本号为0.95,还是一个待定的草案。
苹果方面,在2012年中发布的新机已全面改用USB 3.0接口。
至于对Firewire信号是否存在干扰问题,还不得而知,但是不管怎样,苹果需要去支持“SuperSpeed”,如果所有人都看好这个接口标准的话。
起初,在USB 3.0的支持方面,不管是操作系统还是设备,肯定不会一步到位。初期会简单的在小型设备上试用,然后存在这样那样的问题,并且还不会全面发挥USB 3.0的优势。不过,随着时间的推移,这些都会逐步的完善起来。
请注意,Vista不能够使用Intel主控的USB 3.0接口(Intel并未针对Vista提供驱动),如果需要在Vista上面使用USB3.0,请使用其他厂牌的主控。
简单说,所有的高速USB 2.0设备拿到USB 3.0上来只能会有更好的表现,至少不会更加的糟糕。
这些设备包括:
外置硬盘 - 在传输速度上至少有两倍的提升,更不用担心供电不足的问题了;
视频显示器,例如采用DisplayLink USB视频技术的产品;
另外,最常用的读卡器设备,尤其是当设备中同时使用多种类型的闪存卡,或者是读卡器连接到USB Hub上,而USB Hub上又有多个读卡器的时候,那种传输速度简直是难以忍受的折磨。
USB 3.0则提供了更多的空间,来解决这样的问题,提供5-10倍的带宽不是问题。
还有一点是可以预见的,理论上每秒4.8Gb的传输速度,足以让USB侵入到以前从不敢涉猎的范围,例如磁盘阵列系统。
随着Vista操作系统、高清视频和DX10的逐步普及,大容量、高速的数据传输越来越多,对带宽的需求也越来越高,原来的USB1.1和USB2.0已无法满足未来的需要。2007年底开始,英特尔公司和惠普(HP)、NEC、NXP半导体及德州仪器(Texas Instruments)等公司共同开发USB3.0技术,USB3.0技术主要应用于个人计算机、消费及移动类产品的快速同步即时传输。
USB 3.0具有后向兼容标准,兼容USB1.1和USB2.0标准,具传统USB技术的易用性和即插即用功能。USB3.0技术的目标是推出比USB2.0快10倍以上的产品,采用与有线USB相同的架构。除对USB 3.0规格进行优化以实现更低的能耗和更高的协议效率之外,USB 3.0的端口和线缆能够实现向后兼容,以及支持未来的光纤传输。
USB3.0将采用一种新的物理层,其中,用两个信道把数据传输(transmission)和确认(acknowledgement)过程分离,因而达到较高的速度。为了取代USB所采用的轮流检测(polling)和广播(broadcast)机制,新的规格将采用封包路由 (packet-routing)技术,并且仅容许终端设备有数据要发送时才进行传输。新的链接标准还将让每一个组件支持多种数据流,并且每一个数据流都能够维持独立的优先级(separate priority levels),该功能可在视讯传输过程中用来终止造成抖动的干扰。数据流的传输机制也使固有的指令队列(native command queuing)成为可能,因而能使硬盘的数据传输优化。
为了向下兼容2.0版,USB 3.0采用了9针脚设计,其中四个针脚和USB 2.0的形状、定义均完全相同,而另外5根是专门为USB 3.0准备的。
标准USB 3.0公口的针脚定义,白色部份是USB 2.0连接专用针脚,而红色部分为USB 3.0专用。
标准USB 3.0母口的针脚定义,紫色针脚为USB 2.0专用,红色为USB 3.0连接专用。
USB 3.0线缆如果不算编织(Braid)用线,一共是8根,值得注意的是,在线缆中,USB 2.0和3.0的电源线(Power)是共用的。
Mini USB 3.0接口分为A、B两种公口(Plug),而母口(Receptacle)将有AB和B两种,从形状上来看,AB母口可兼容A和B两种公口,3.0版公口的针脚是9针。
Ravencraft指出一些便携式摄像机保存250Gbyte的数据,甚至一些MP3播放器和手机都增长到内置8到16Gbyte的闪存。 同期于USB 3.0的发布,PCMCIA组织宣布PC设备上的ExpressCard标准的2.0版本,该标准提供比ExpressCard 1.2标准快10倍的传输速率,而且同时支持Express 2.0和新的USB 3.0协议。 “ExpressCard技术与Express和USB规范很相近,而2.0标准的发布充分利用了这两种接口技术进步的优势,”PCMCIA主席Brad Saunders表示。
USB接口为何流行?USB鼠标、USB键盘、USB摄像头、USB打印机、USB……接触电脑的人就不可能不接触到USB这种大众到极点的接口,但并非所有人都了解USB接口,而正是这种融入生活的忽略从一个侧面验证了USB的成功——我们已经把它当做自然而然理应存在的东西。
很少有人会去考虑一个小小的USB接口标准为什么会成功,USB在刚诞生时的传输速率是最高的吗?显然不是,但USB接口却绝对是最多巨人力挺的——Microsoft和Intel等等行业领头人都对USB青睐有佳(最直接的例子就是Intel将USB控制器直接做到了其ICH南桥芯片当中),而世界上使用Intel和Microsoft产品的用户不说100%也起码有60%以上,而USB成功推广的最重要原因正在于此。
与USB同时期推出的IEEE 1394接口则没有这么好的待遇了,虽然IEEE 1394的理论传输速率比USB要高(IEEE 1394是传输速率最快的串行总线),但由于缺少了设备端厂商的支持而完全没有USB那般的普及程度。
我们往往看到这样的情况:一款主板上往往拥有多达六个USB接口而却没有一个1394接口。虽然1394的普及度存在极大问题,但它依然是影像领域不二的传输方式。
有了Intel和微软这些大公司的支持,USB自然是风生水起、不停壮大,但IT行业的规则就是不进则倒,因此21世纪初至今USB也经历了从1.0到2.0的技术革新,现在USB 2.0的理论最高传输速率已经达到了480Mbps以上(当然在实际的应用中我们很难达到这个数据),看起来这个数据很吓人,但计算机的存储硬件却也同时在不断进步着。看到动辄以TB计算的磁盘容量,和动辄以10GB为单位的蓝光视频源,我们不禁苦笑——USB 2.0已然捉襟见肘。
好在固步自封这个词已经成为行业禁忌,USB 3.0标准也于08年出台,新的USB 3.0标准能够提供比之前USB 2.0多出10倍以上的传输速率,这俨然已经是串行标准中的顶级水准了。
当然了,还有USB连接的显示器也将成为可能,甚至更夸张一些,外置CPU都有可能出现在未来USB 3.0的平台基础上,而各大公司的全力支持则让USB 3.0几乎不存在任何普及方面的问题,或许唯一要考虑的就是价格了……
USB ,是英文Universal Serial BUS(通用串行总线)的缩写, 而其中文简称为“通串线,是一个外部总线标准,用于规范电脑与外部设备的连接和通讯. 从1994年11月11日发表了USB 0.7版本以后,USB版本经历了六年的发展,已经发展到了2.0的版本。它才得到广泛的普及应用。
早期的USB版本,在推出时普遍不遭到重视。其最大的原因是:当时的主板结构是以Baby-AT板为主,USB功能接口在许多主板上都是一种可选择的功能,有些主板制造商在主板上提供了4X2或5X2的USB针脚接口,而更多的则为了节省成本,连USB针脚接口都省掉了。另外,在BIOS固件方面也缺乏支持――当时很多主板都是只提供有USB连接针脚接口,而主板的BIOS没有真正支持USB。这样,很多用户为了使用USB,只有通过升级主板BIOS的方法,将主板BIOS刷新到能支持USB功能的BIOS才行。
这种情形一直延续到ATX主板结构的诞生。不过一开始的ATX主板在支持USB的方面还不是很好。因为一般ATX的设备连接口都设计成一层的高度,其所能使用的接口空间都给传统的串行通讯接口和LPT打印机占用了,根本没有余地留给USB接口,所以当时如果要想使用USB接口的话,还得使用USB转接卡,通过连线与主板上的USB针脚接口相连才能得以实现。不过后来ATX主板的Back Panel设计成了二层,终于使USB接口在主板上有了安身立足之处,无须再通过外接USB转接卡了。
1999年初在Intel的开发者论坛大会上,与会者介绍了USB 2.0规范,该规范的支持者除了原有的Intel、Microsoft和NEC等成员外,还有惠普、朗讯和飞利浦三个新成员。USB 2.0向下兼容USB 1.1,传输率将达到480Mbps,还支持宽带数字摄像设备及下一代扫描仪、打印机及存储设备。
2022年10月,USB-IF组织决定,USB 3.0被正式取消。
USB技术的推出,可能是近代来计算机技术最重要的发展,因为USB的出现让IT产业的接口产生很大的革命,后来的影响不仅在IT产业,连消费性电子产业也到处可见USB的接口,因此USB的成功是无庸置疑的。除了在个人计算机、笔记本电脑、小笔电都是100%的标准配备外,我们也可以轻易在手机、LCD TV 、打印机、复印机等消费性电子产品上发现USB的踪迹,笔者甚至看过连瑞士小刀上都有USB界面,由此可知USB真是无所不在。就这一点,我们不得不佩服Intel与Microsoft在IT产业强大的影响力,在这两家厂商的联手之下,USB硬是把另一个接口-1394给比下去,成为主导IT设备与消费性电子产品通讯接口的标准。
虽然USB有很高的应用范畴与Installation base (估计自1996推出USB 1.0规格,已有60亿的installation base,而且以每年20亿的数目持续增长),但是当初USB-IF规划USB的规格时并未很有规划的将USB接口的技术蓝图整个揭橥于世,并未像后来的SATA-IO于2001年规划SATA的技术发展蓝图时,一开始就将SATA 分为1.5 Gbps、3.0 Gbps与6.0 Gbps三个世代(请参考表1之比较表),感觉上比较像是在且战且走;所以自2000年推出USB 2.0规格后,虽然将USB 2.0的带宽大幅从12Mb/s提升至480Mb/s,但是我们都知道IT产业的发展定律是带宽永远不嫌多,储存容量也永远不嫌多,所以很快的大家就觉得USB 2.0已经不敷使用,也因此一直有公司力主要持续推出USB 3.0的规格,但是这些声音也仅止于大家的讨论,USB-IF一直未正式回应是否有USB 3.0的规划,一直到2007年9月18日在美国举办的IDF, Pat Gelsinger说明了USB 3.0的规划,USB 3.0的发展才确定下来。
当初USB-IF在1994年规划USB技术时,因为将其定位在较低速的周边界面,所以带宽仅订在1.5Mb/s(Low Speed)与12Mb/s(Full Speed);其中Low Speed主要用于人机接口装置(Human Interface Devices,HID)例如键盘、鼠标、游戏杆,High Speed主要用于大量数据传输的需求,这就是USB 1.0的规格,并于1996年正式公布此一规格。当USB 1.0相关产品陆续上市后,随着使用USB的数量越来越大,市场上也发现关于USB 1.0规格的问题,所以USB 1.1的规格在1998年正式公布,修正1.0版已发现的问题,其中大部分是关于USB Hub的项目。
虽然自USB 1.1规格公布后,USB接口规格算是逐渐完整,但是与IEEE 1394比较起来,在传输效能上就完全被比下去(请参考表2之比较),也正因为如此,在USB接口设备不断地被广泛应用后,许多的装置,如视频会议的CCD,或是像nand flash随身碟(U盘)、外接式硬盘、光盘刻录机、扫描仪、卡片阅读机便成为USB界面的一个非常流行的应用。随着市场上厂商与消费者对USB产品的接受度越来越高,希望USB传输效能可以更好的呼声也越来越大。因此在这样的背景之下,USB-IF开始着手USB 2.0规格的制定,并于2000年正式公布USB 2.0规格。在USB 2.0规格中,最重要的是增加更高的数据传输速率 480 Mbps (又称Hi-Speed),USB规格至此确立了3种数据传输速率,并维持至今,3种速率分别是:
● 1.5Mbps(Low Speed)
● 12Mbps(Full Speed)
● 480Mbps(Hi-Speed)
正如前言所提,在USB 2.0规格推出后,的确暂时解决了带宽落后IEEE 1394的问题,但是随着USB的应用范畴越来越广,与其他界面技术的不断的进步之下,当然更重要的是-档案的容量也越变越大,尤其是影音数据,所以USB 2.0的窘境也益加明显。这其中又以Nand Flash随身碟产品、硬盘外接盒产品及卡片阅读机(CardReader)产品影响最大。我们分别简述如下:
Nand Flash随身碟产品
虽然USB 2.0 Hi-Speed的数据传输速率是480Mpbs,也就是理想状况下应该为60MB/s,但是在Windows based操作系统下,由于default driver的限制,实际的效能大约为30MB/s~35MB/s,与60MB/s有一大段距离,然而以前Nand flash的效能也不够好,从来也用不到30MB/s的USB 2.0带宽,所以也相安无事;但是随着Nand flash技术不断的进步,与RAID 0架构(Data Stripping)导入Nand flash产品设计,Nand flash产品的带宽需求已超越USB 2.0 Hi-Speed所能提供的30MB/s。例如以SATA 接口为主的SSD(solid state disk)产品,sequential read的效能都以超越100MB/s,更显出USB 2.0 Hi-Speed效能的不足。所以不论是高速的大拇哥产品(大陆称为U盘)或SSD都迫切需要更高速的USB 3.0提供更好的效能。虽然SATA接口可以符合SSD的需求,但是USB有提供bus power的优势,这是SATA或eSATA所无法媲美USB的地方。
硬盘外接盒产品
除了Nand Flash随身碟产品外,硬盘外接盒也是外面的水管比里面的水管小的状况。由于USB 2.0 Hi-Speed在Windows base OS之下,仅有30MB/s的效能,而硬盘内部的传输速率至少有60MB/s,所以这样的差距相当的大。以前档案容量还不太大的时候,消费者还勉强可以忍受,但是各种影音数据动辄数GB以上,BD影片数据更是50GB以上,如果还用USB 2.0 Hi-Speed拷贝数据的话,那么真的会令人捉狂(请参考表3)。所以随着硬盘外接盒出货量年年维持25%以上的年复合增长率之下,提供一个更高效能且普遍性高的接口,是刻不容缓的事情。
卡片阅读机产品
与Nand Flash有密切关系的memory card,也面临与nand flash类似的问题;以前的记忆卡,速度还不够快,但是随着新的记忆卡规格的推出,如SDXC,最高可达150MB/s的传输速率,当然不是USB 2.0 Hi-Speed所能满足的,也因此USB 3.0对高速的记忆卡而言,是非常重要的里程碑。
正如上述产品效能的压力,各界对USB 3.0的需求也愈来愈高。在各界千呼万唤之下2007年9月18日,Intel于IDF上正式宣布USB 3.0的规格将计划于2008年推出,也宣示了USB 3.0的主要应用范围(请参考图1),正式响应了广大消费者对更快速传输接口的需求;Intel并称USB 3.0最高传输效能为SuperSpeed,有别于传统的Low Speed、Full Speed与Hi-Speed。经过了一年的时间USB-IF终于在2008年11月18日正式对外公布了USB 3.0的规格,宣告了USB另一个崭新时代的来临。
当初规划USB 3.0的规格时,最重要的就是要解决数据传输速率过低的问题,因此在规划USB 3.0 SuperSpeed架构时,采用新的物理层(PHY)是无可避免的事情,因此从PCIe与SATA等高速IO移转经验是再自然不过的考虑。然而USB-IF还是坚持backward兼容性的问题,所以USB 3.0的规范主轴,包含了以下各点:
● 比既有的USB 2.0 Hi-Speed快10倍以上的传输速率。
● 完整考虑向后兼容性问题,包含既有的Class Driver都可以在新的组件上正常工作。
● 相同的USB device model,这包含了PIPE model、USB Framework与Transfer type。
● 电源管理的效率,在新规格中,提供了更好的电源效能的管理,特别是在Idle的状况之下,另外也为了取代USB所采用的轮流检测(polling)和广播(broadcast)机制,提供更佳的电源管理效能。
● 架构与技术的延伸性,为了增加技术的scalability,在通讯协议上的规划都已考虑有效率的Scale up and Scale down的问题。
USB-IF在上述前提之下,采用了PCIe的主要PHY架构,以5.0 Gbps为USB 3.0 SuperSpeed的数据传输速率,在传输编码技术的选择上,导入广为在其他高速串行传输技术所采用的8b/10b编码技术,以提高传输位的辨识率并且降低高频信号的电磁干扰。在向后兼容性上,为了与USB 2.0 Low Speed、Full Speed与Hi-Speed共存,采用了Dual-bus架构的设计(请参考图2),在通信协议上,如上述所提,新的规格采用一种封包路由(packet-routing)技术,并且仅容许终端设备有数据要发送时才进行传输,取代USB所采用的轮流检测(polling)和广播(broadcast)机制,这也与SATA Asynchronous notifications有异曲同工之妙。在cable connector方面,USB 3.0新增了5个触点,两条为数据输出,两条数据输入,采用发送列表区段来进行数据发包,新的触点将会并排在4个触点的后方。USB 3.0 bus power标准为900mA,并将支持光纤传输。这也就是SuperSpeed技术的雏型(参考表4)。
有关Cable Connector,USB-IF在制定新规格时,同时考虑了技术与市场的平衡点,这些因素包含了:
● 必须能support 5.0 Gbps的数据传输
● 可完全维持与USB 2.0的兼容性
● 将cable & connector的form factor改变控制在最小范围
● EMI防护的问题
● 维持USB容易使用的传统
因此CableCon就在这样的指导原则下订出Stand A、Stand B、Micro B与Micro AB的CableCon规范,USB-IF巧妙的将USB3_TX+、USB3_TX-、USB3_RX+、USB3_RX-与GND导入新的CableCon之中(请参考图3,4,5),并透过Double-Stacked connector的support,让USB 2.0可与USB 3.0共存。
不过在这里提醒各位,Stand A是完全可以USB 2.0与USB 3.0互相连接没有问题(这意谓着你可以把USB 2.0 Stand A Cable插入USB 3.0 Stand A connector,也可以把USB 3.0 standard cable插入USB 2.0 Stand A connector),但是Stand B与Micro B就没有办法这样,但是至少所有旧的线缆都可以插入新的接口,而旧的设备上的接口,无法支持新的线缆(典型案例,市面上已知和未知的大多数手机的连接口均为USB2.0 Micro-B,至少你可以用之前的连接线接入3.0接口,但是新的3.0线缆是无法支持的)
High Speed Serial Link 产品(如USB、Serial ATA与PCI Express)的发展,已由主板应用出发,逐渐衍生更多应用于外围与消费性电子产品,进入百家争鸣的情况。然而不论是芯片供货商或系统厂商,都面临益形复杂的设计挑战。这些新挑战包含了:
● 更高的芯片设计进入障碍:与纯数字IC设计相比,High Speed Serial Link从480 Mbps、 1.5 Gbps、2.5 Gbps、3.0 Gbps至5 Gbps与6 Gbps,一次又一次的考验IC设计公司在模拟设计与mixed-mode的能力。这也是为什么台湾只有少数公司能提供从Serial ATA到PCI Express与USB 3.0完整的产品与IP解决方案。
● 为系统厂商考虑Design Margin问题:对于系统厂商而言,采用一颗IC上自己的系统产品,最担心的是PCB Layout的design margin过小或是design rule太过复杂。因此IC设计公司必须为系统厂商考虑到这些设计上的问题,也加深了高速IO芯片设计的难度。
● IC量产良率:由于高速IO有物理层(PHY)部分的设计,因此对于IC良率的影响甚为重大,通常将PHY包入SoC内,往往是量产良率最大的杀手。所以如何透过模拟设计design margin的综合考虑,维持量产良率,对IC设计公司而言是相当大的挑战。
● IC量产测试方法:通常在480MHz以上,往往需要使用较贵的测试机台;但是如果厂商能使用较便宜的测试机台,完成高速IO的相关测试,对于IC的成本也有很大的帮助。
● 兼容性议题:USB兼容性的问题众所周知,所以才有USB-IF logo验证制度的产生。USB 3.0 logo certification program尚未完成,因此如何克服硬件兼容性的问题,是相当据有挑战性也令人感到繁琐的问题。
今日的电子信息技术日新月异,在PC interface的发展也由传统的并列传输方式,演进至高速串行传输。新的规格与新的技术,也带来新的设计挑战。除了USB 3.0的规格正式问世之外,SATA 6.0 Gbps 的规格也正式问世,相关的产品也将陆续于个人计算机、笔记本电脑上出现,配合已经问世且逐渐成为主流的Gigabit Ethernet,高速Serial Link的技术俨然已成为驱动计算机市场持续增长的动力。
这一块USB 3.0扩展卡来自国外品牌ACASIS阿卡西斯,做工相当豪华。(ACASIS阿卡西斯为国际品牌,和NEC电子等上游半导体厂商建立起良好的合作关系,并在深圳设立公司及生产线)
USB 3.0的最大改进在于大幅度提升传输速度,它的传输速度达到了5Gbps,也就是640MB/s,同时在使用A型接口时向下兼容原有的USB 2.0和USB 1.1等。最早的USB 1.0规范出现在1996年,传输速度仅为1.5Mbps。1998年,USB 1.1规范诞生,速度提升到了12Mbps。到了2000年4月,
我们广泛使用的USB 2.0规范诞生,速度提升到了480Mbps,为USB 1.1规范的40倍。
USB3.0的主要优势在于高速:5Gbps(USB2.0的速率为480Mbps)、全双工(数据同时双向传输)。
USB3.0技术将支持铜线和光纤、无线传输。
USB 3.0在应用层上至少能达到300MByte/s的数据吞吐量。
它使用5个端口连线(两个用于发送,两个用于接收,一个是地线)来实现全双工从而达到5Gbps的物理层速率,USB产品采用两线,半双工的架构。外观上Type-A的接头没有改变,但内部有5个连线来支持全双工,新的连接器兼容旧的插口。
可以看出一个耗完电的电池接上后不久就可以恢复电力。
点评:虽然暂时还没有采用USB 3.0规范设备,但作为全球采用最为广泛的接口,我们有充分理由看好USB 3.0的市场前景。无论是数据传输还是电力供应,USB 3.0都比当前流行的USB 2.0更有优势。另据悉,ACASIS阿卡西斯即将推出采用USB 3.0规范的移动硬盘等外围设备。
产品类型:数据传输卡
接口、转接类型:USB 3.0
扩展卡传输速率:5Gbps
产品概述:它采用PCI-E 1×总线设计,采用了一颗NEC D720200F1控制芯片,提供两个USB 3.0扩展接口。扩展卡采用绿色PCB,并采用了大量贴片电容和电阻。
由Intel、微软、惠普、德州仪器、NEC、ST-NXP等业界巨头组成的USB 3.0,Promoter Group在2008年11月17日宣布,该组织负责制定的新一代USB3.0标准。制定完成的USB 3.0标准已经移交给该规范的管理组织USB Implementers Forum(简称USB-IF)。
在USB开发者会议上,广泛采用的USB接口引来了新的3.0官方版本,会议上一些厂商希望采用该新标准的产品能达到400Mbyte/s。
USB 3.0在应用层上至少能达到300Mbyte/s的数据吞吐量。新规范与前代版本兼容,然而新接口需要新的线缆和连接器,而且传输距离被限制在3米,而USB产品可以支持5米长的线缆。
1.0标准,也被称作是超高速USB(SuperSpeed USB),在一些特性上是独一无二的。它使用5个端口连线 - 两个用于发送,两个用于接收,一个是地线 - 来实现全双工从而达到5 Gb/s的物理层速率,USB产品采用两线,半双工的架构。
粗略来说,新的USB 3.0芯片需要两倍于原来的门数和三倍于以往的功耗,在会议上演示一款USB 3.0芯片的Symwave公司的市场副主席John O'Neill表示。
但是,受益于其较高的速率,USB 3.0在每Gbit数据传输的功耗低于规定的标准,John补充道,“另外,因为增强的协议,在主机(host)端处理器运算会得到减轻,从而整个系统的功耗在mW/Gbit的基础上还会有降低。”
另外,3.0版本在链路上采用了中断驱动,而不是轮检方法,这样进一步降低功耗。通信采用点对点的链路,而不是像对所有连接的器件采用广播数据的方法。
规范还将链路电流从500毫安提高到900毫安,这样采用USB充电速度会更快。可以看出一个耗完电的电池接上后不久就可以恢电量。
愿意签署USB接受协议的客户可以下载新的标准。
新系统2010年上市
USB应用论坛的主席Jeff Ravencraft表示,“我们预测主机和控制器产品会在2009年中陆续进入市场,基于那些器件的系统产品会在2010年初上市。”
该连接希望能扩展更多的应用,最初是想象比如大的视频文件的传输,长期来说,希望能在大范围的系统上进行替代,特别是日益增多的闪存和磁盘存储。
采用新标准的卡将在2010年上市,可能会包括支持固态存储驱动的6Gbit/s SATA接口的适配器,和用于传输视频流的USB 3.0适配器。
超过400个人想参与那个USB 3.0会议,Synopsys在该会议之前宣布将提供USB 3.0控制器和物理层器件的硅IP。
Symwave已经发布了一款USB 3.0物理层器件,Quasar物理层会在展会上得以展示。
USB 3.0开发者小组包括超过200家公司,全球已经有100亿颗USB器件售出。
“2007年一年就出货了26亿个USB端口,USB 3.0的市场机会将会大大挤压其他有线接口技术的空间,”In-Stat高级分析师Brian O'Rourke在一个发布会上表示,“预计USB 3.0从2009到2012的平均年度增长率将达到100%,在2012年达到五千万的出货量。”
Intel的一篇白皮书《USB 3.0 Radio Frequency Interference Impact on 2.4 GHz Wireless Devices》中即清楚地指出,USB3.0在使用时,会在2.4G频段增加约20dB的噪声,造成对2.4GHz ISM频段的射频干扰。这种干扰会降低无线接收的灵敏度,进而缩减收讯范围,足以影响干扰无线设备(无线网卡、无线鼠标及无线耳机等)的正常使用。实际上,USB3.0的扩频处理导致其频谱从0Hz一直盖到5GHz。经Intel测量,干扰功率随频率下降,在2.4G频段约有-60dBm,到5G频段只有-90dBm。同时文中还指出,当这频段的射频接收器放得愈靠近USB 3.0装置或连接器,干扰的状况就愈明显。
很可惜的是,这个由USB 3.0高频通讯所产生的噪讯是一种宽频噪讯,因此无法被过滤消除,而且刚好落在常用的2.4-2.5 GHz的频段范围。Intel建议的解决方式是对USB 3.0连接器及周边装置进行遮蔽设计,做得愈彻底,效果愈好。此外,无线天线放得离USB 3.0连接器及装置也要愈远愈好。
对于这样的设计参考建议,USB 3.0及NB/PC业者感到相当「无言」。举例来说,当USB 3.0硬盘和无线鼠标的接收器要一起使用时,无线鼠标的接收器最好要用延长线接出来到够远的位置,才能顺利使用,这种作法实在很难说服消费者去接受吧。