更新时间:2024-01-24 15:48
什么是三棱锥
几何体,锥体的一种,由四个三角形组成,亦称为四面体,它的四个面(一个叫底面,其余叫侧面)都是三角形。
平面上的多边形至少三条边,空间的几何体至少四个面,所以四面体是空间最简单的几何体。四面体又称三棱锥。三棱锥有六条棱长,四个顶点,四个面。底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥称作正三棱锥;而由四个全等的正三角形组成的四面体称为正四面体。
三棱锥是一种简单多面体。指空间两两相交且不共线的四个平面在空间割出的封闭多面体。它有四个面、四个顶点、六条棱、四个三面角、六个二面角与十二个面角。若四个顶点为A,B,C,D.则可记为四面体ABCD,当看做以A为顶点的三棱锥时,也可记为三棱锥A-BCD。四面体的每个顶点都有惟一的不通过它的面,称为该顶点的对面,原顶点称这个面的对顶点。在四面体的六条棱中,没有公共端点的两条称为对棱。四面体有三双对棱。且对棱的中点连结的线段(三条)彼此平分于同一点即四面体的重心,亦称四面体的形心。四面体的四个顶点与所对面(三角形)的重心连线(四条线段)必相交于同一点,即四面体的重心。若在四面体的四个顶点处各置重量相同的质心,则这个质点系的质心就在该四面体的重心处。或者当四面体由均匀物质构成时,它的质心就在四面体的重心处.四面体的重心平分四面体的每一双对棱中点连线。连结四面体的顶点与所对面的重心的线段,被四面体的重心内分为3∶1(从顶点量起)。过四面体的每双对棱作一对平行平面,这三对平行平面围成一个平行六面体,即为原四面体的外接平行六面体,四面体的棱都是其外接平行六面体的面(平行四边形)上的对角线.四面体的重心平分其外接平行六面体的每一条对角线.除重心性质外,四面体还有如下的性质:
1.四面体的每一条棱与其对棱的中点确定一个平面,这样的六个平面共点。
2.四面体外接平行六面体的各棱分别平行且等于四面体中连结各对棱中点的线段。
3.四面体的六条棱的六个中垂面共点,这点是四面体外接球的中心.每个四面体有惟一的外接球。
举例
弓箭头、三棱刮刀、其实所有长方体的物体切下的的角都是三棱锥。
相关计算
h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长有:
三棱锥棱锥的侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则:(其中Si,i=1,2为第i个侧面的面积)
S全=S棱锥侧+S底
S正三棱锥=1/2CL+S底
V=S(底面积)·H(高)÷3
三棱锥体积公式证明:h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长
三棱锥的底面面积S加顶点A'面积0除以2的平均面积1/2S的一个三棱柱乘以高h,就是三棱锥体积:
V=1/2(S+0)h=1/2Sh
S面积三角形AC乘h'除以2
例题
这是一个一般的三棱柱ABC-A'B'C',它的体积可以分为三个等体积的三棱锥,即三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'。
因为三棱柱的侧面A'ABB'是平行四边形,所以△A'AB的面积=△A'BB'的面积,即其中三棱锥C-A'AB与三棱锥C-A'B'B的底面积相等,它们两个的顶点都是C,即C到它们底面的距离都相等,所以三棱锥C-A'AB与三棱锥C-A'B'B的体积相等。而三棱锥C-A'B'B也可以看作是三棱锥A'-BCB',且三棱等),且它们两个的顶点都是A',即A'到它们底面的距离都相等,所以三棱锥A'-CB'C'与三棱锥A'-BCB'的体积也相等,故三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'的体积都相等。
体积公式
定理1:如果一个四面体的两条相对棱的长分别是a、b,它们的距离是d,所成的角为θ,那么它的体积是。
定理2:如果一个四面体的各面都是边长分别为a、b、c的全等三角形,若记,那么它的体积是。
内切球心
正三棱锥内切球心在顶点与底面重心的连线的距底面1/4处。
相关计算:因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离,又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出底面与球心的距离(即内切球半径)。
一般的三棱锥内切球心在四个面上的射影与四个面的重心重合,据此可确定球心位置。
外接球心
正三棱锥外接球心在顶点与底面重心的连线的距底面1/4处。
相关计算:和计算内切球心一样算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出顶点与球心的距离(即外接球半径)。
一般的三棱锥外切球心在四个面上的射影与四个面的外心重合,据此可确定球心位置。
其中R为外接球半径,a、A、B如图1,为A、B所在面二面角。
若二面角为90°,即两面垂直时公式简化为
与棱相切的球心
正三棱锥的与棱相切的球心在顶点与底面重心的连线的距底面1/4处(正三棱锥三心重合)
一般的三棱锥与四条棱都相切的球心在四个面上的射影与四个面的内心重合,据此可确定球心位置。
三棱锥顶点射影与底面三角形的“心”
设有三棱锥P-ABC,P在平面ABC上的射影为O,现讨论当三棱锥满足什么条件时,O分别是△ABC的外心、内心、旁心、重心、垂心(三角形五心)。
外心
若O是△ABC的外心,则OA=OB=OC。由于OP⊥平面ABC(射影的定义),因此OP⊥OA、OP⊥OB、OP⊥OC。勾股定理得PA=PB=PC。又tanPAO=OP/OA,tanPBO=OP/OB,tanPCO=OP/OC,由此可知∠PAO=∠PBO=∠PCO。
综上,可得到以下定理:
内心
若O是△ABC的内心,则O到三边距离相等,且O在△ABC内。设O到BC、AC、AB的垂线段分别为OD、OE、OF,那么OD=OE=OF。由勾股定理得PD=PE=PF。又tanPDO=OP/OD,tanPEO=OP/OE,tanPFO=OP/OF,因此∠PDO=∠PEO=∠PFO。且由三垂线定理可知PD⊥BC、PE⊥AC、PF⊥AB,即∠PDO、∠PEO、∠PFO分别是二面角P-BC-A、P-AC-B、P-AB-C的平面角。
综上,可得到以下定理:
旁心
由于旁心和内心的性质相同,都是到三角形三边距离相等的点。只不过内心在三角形内部而旁心在三角形外部。所以讨论的思路和内心相同,差异就在O与△ABC的位置关系而已。因此直接得到以下定理:
垂心
若O是△ABC的垂心,则有OA⊥BC,OB⊥AC,OC⊥AB。又因为O是P的射影,由三垂线定理可知PA⊥BC,PB⊥AC,PC⊥AB。推广来看,从PA⊥BC可以联想到PA⊥平面PBC,而根据线面垂直的判定定理,PA⊥平面PBC的条件是PA⊥PB,PA⊥PC。同理,PB⊥PA,PB⊥PC;PC⊥PA,PC⊥PB。即PA、PB、PC两两垂直。
综上,可得到以下定理:
重心
定理: