更新时间:2024-11-05 15:32
三维笛卡尔坐标系是在二维笛卡尔坐标系的基础上根据右手定则增加第三维坐标(即Z轴)而形成的。同二维坐标系一样,AutoCAD中的三维坐标系有世界坐标系WCS(World Coordinate System)和用户坐标系UCS(User Coordinate System)两种形式。
在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如图1所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。
要确定轴的正旋转方向,如图1所示,用右手的大拇指指向轴的正方向,弯曲手指,那么手指所指示的方向即是轴的正旋转方向。
在AutoCAD中,三维世界坐标系是在二维世界坐标系的基础上根据右手定则增加Z轴而形成的。同二维世界坐标系一样,三维世界坐标系是其他三维坐标系的基础,不能对其重新定义。
用户坐标系为坐标输入、操作平面和观察提供一种可变动的坐标系。定义一个用户坐标系即改变原点(0,0,0)的位置以及XY平面和Z轴的方向。可在AutoCAD的三维空间中任何位置定位和定向UCS,也可随时定义、保存和复用多个用户坐标系。详见本章第3节。
在AutoCAD中提供了下列三种三维坐标形式:
1.三维笛卡尔坐标
三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值。同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值。
2.圆柱坐标
圆柱坐标与二维极坐标类似,但增加了从所要确定的点到XY平面的距离值。即三维点的圆柱坐标可通过该点与UCS原点连线在XY平面上的投影长度,该投影与X轴夹角、以及该点垂直于XY平面的Z值来确定。例如,坐标“10
圆柱坐标也有相对的坐标形式,如相对圆柱坐标“@ 10
3.球面坐标
球面坐标也类似与二维极坐标。在确定某点时,应分别指定该点与当前坐标系原点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。例如,坐标“10
同样,圆柱坐标的相对形式表明了某点与上个输入点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。
注:
1 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
2 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z)向量的坐标表示
,使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。
三维笛卡尔坐标系
三维笛卡尔坐标(X,Y,Z)是在三维笛卡尔坐标系下的点的表达式,其中,x,y,z分别是拥有共同的零点且彼此相互正交的x轴,y轴,z轴的坐标值。
圆柱坐标(ρ,θ,z)是圆柱坐标系上的点的表达式。设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数ρ,θ,z来确定,其中ρ为点P在xoy平面的投影M与原点的距离,θ为有向线段PO在xoy平面的投影MO与x轴正向所夹的角。圆柱坐标系和三维笛卡尔坐标系的点的坐标的对应关系是,x=ρcosθ,y=ρsinθ,z=z。
球面坐标系由到原点的距离、方位角、仰角三个维度构成。 球面坐标(ρ,θ,φ)是球面坐标系上的点的表达式。设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角.这里,M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为 r∈[0,+∞), φ∈[0,2π], θ∈[0, π] . r = 常数,即以原点为心的球面; θ= 常数,即以原点为顶点、z轴为轴的圆锥面; φ= 常数,即过z轴的半平面。 其中 x=rsinθcosφ y=rsinθsinφ z=rcosθ