三重积分

更新时间:2024-04-03 16:48

设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。

定义

设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积.在Δvi上任取一点 作和 .如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y,z)在区域Ω上的三重积分,记为 ,即 ,其中dv叫做体积元素。

其中,∫∫∫称为三重积分号,f(x,y,z)为被积函数,f(x,y,z)dv称为被积表达式,dv称为体积元,x、y、z为积分变量,Ω为积分区域, 为积分和。

性质

线性性质

(1) (k为常数),被积常数中的常数因子可以提到三重积分号外面。

(2)设α、β为常数,则 ,函数的和(或差)的三重积分等于各个函数的三重积分的和或差。

可加性质

如果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。

不等性质

如果在G上,f(x,y,z)≤φ(x,y,z),则有,特殊地,若函数f(x,y,z)在Ω上可积,则|f(x,y,z)|亦在Ω上可积,且有。

估值性质

设M、m分别为f(x,y,z)在闭区域G上的最大值和最小值,V为G的体积,则有mV≤≤MV。

积分中值定理

设函数f(x,y,z)在闭区域G上连续,V是G的体积,则在G上至少存在一个点 使得

另外由重积分的性质知,当f(M)=1时,三重积分 ,这里V(Ω)表示空间域Ω的度量,即V(Ω)表示Ω的体积。

计算方法

直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

②函数条件:f(x,y)仅为一个变量的函数。

柱面坐标法

适用被积区域Ω的投影为圆时,依具体函数设定,如设

①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;

②函数条件:f(x,y,z)为含有与 (或另两种形式)相关的项。

球面坐标系法

适用于被积区域Ω包含球的一部分。

①区域条件:积分区域为球形或球形的一部分,锥面也可以;

②函数条件:f(x,y,z)含有与 相关的项。

几何意义

三重积分就是四维空间的体积。

当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值。

当积分函数不为1时,说明密度分布不均匀。

应用

设Ω为空间有界闭区域,f(x,y,z)在Ω上连续

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}