更新时间:2023-01-27 17:47
下限,一般是指函数的最小值或自变量的最小值,在数学分析中,在给定范围内(相对极值)或函数的整个域(全局或绝对极值),函数的最大值和最小值被统称为极值(极数)。皮埃尔·费马特(Pierre de Fermat)是第一位提出函数的最大值和最小值的数学家之一。
在数学分析中,在给定范围内(相对极值)或函数的整个域(全局或绝对极值),函数的最大值和最小值被统称为极值(极数)。皮埃尔·费马特(Pierre de Fermat)是第一位提出函数的最大值和最小值的数学家之一。
如集合论中定义的,集合的最大和最小值分别是集合中最大和最小的元素。 无限集,如实数集合,没有最小值或最大值。
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
费马定理可以发现局部极值的微分函数,它表明它们必须发生在临界点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。
对于分段定义的任何功能,通过分别查找每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或最小值)。