更新时间:2024-07-11 06:54
二级固体火箭发动机是用于提供动力的设备,结构简单,推进剂密度大。
固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受2500~3500度的高温和102~2×107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。 药柱燃烧完毕,发动机便停止工作。
固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在250~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。固体火箭发动机主要用作火箭弹、导弹和探空火箭的,以及航天器发射和飞机起飞的助推发动机。
固体火箭发动机药柱燃烧过程中燃面面积的精确计算在固体火箭发动机设计中一直占有重要地位,国内外学者对此也提出了很多计算方法,像通用坐标法、有限元素法和边界坐标法等,但这些方法基本都是数值法,其输入复杂,无法显示燃烧过程中燃面的精确变化,计算精度不高且容易产生燃面波动。随着计算机软硬件的飞速发展,尤其是通用CAD软件的发展,为解决这一问题提供了许多基于图形处理的新方法。