更新时间:2023-10-10 11:49
伴热作为一种有效的管道(储罐)保温及防冻方案一直被广泛应用。其工作原理是通过伴热媒体散发一定的热量,通过直接或间接的热交换补充被伴热管道的损失,以达到升温、保温或防冻的正常工作要求。20世纪70年代,美国能源行业就提出用电伴热方案来替代蒸汽伴热的设想。70年代末80年代初,包括能源行业在内的很多工业部门已广泛推广了电伴热技术,以电伴热全面代替蒸汽伴热。电伴热技术发展,已由传统的恒功率伴热发展到以导电塑料为核心的自控温电伴热。
我国工艺管线和罐体容器的伴热大多采用传统的蒸汽或热水伴热。电伴热是用电热的能量来补充被伴热体在工艺流程中所散失的热量,从而维持流动介质最合理的工艺温度,它是一种高新技术产品。电伴热是沿管线长度方向或罐体容积大面积上的均匀放热,它不同于在一个点或小面积上热负荷高度集中的电伴热;电伴热温度梯度小,热稳定时间较长,适合长期使用,其所需的热量(电功率)大大低于电加热。电伴热具有热效率高,节约能源,设计简单,施工安装方便,无污染,使用寿命长,能实现遥控和自动控制等优点,是取代蒸汽,热水伴热的 技术发展方向,是国家重点推广的节能项目。
电热带接通电源后(注意尾端线芯不得连接),电流由一根线芯经过导电的PTC材料到另一线芯而形成回路。电能使导电材料升温,其电阻随即增加,当芯带温度升至某值之后,电阻大到几乎阻断电流的程度,其温度不再升高,与此同时电热带向温度较低的被加热体系传热。电热带的功率主要受控于 传热过程,随被加热体系的温度自动调节输出功率,而传统的恒功率加热器却无此功能。
电伴热与蒸汽(热水)相比,具有诸多优势如下:
(1)电伴热装置简单、发热均匀、控温准确,能进行远控,遥控,实现自动化管理。
(2)电伴热具有防爆、全天候工作性能,可靠性高,使用寿命长。
(3)电伴热无泄漏,有利于环境保护。
(4)节省钢材:它不需要蒸气伴热所需的一来一去二趟伴热管路。
(5)节省保温材料。
(6)节约水资源,不象锅炉每天需要大量的水。
(7)电伴热还能解决蒸气和热水伴热难以解决的问题。
(8)电伴热设计工作量小,施工方便简单,维护工作量小。
(9)效率高,能大大降低能耗。
一次性投资,还是年运行费用,电伴热带比蒸汽伴热带都要节省;有的项目电伴热带的一次性投资可能会略高于蒸汽热水伴热,但以年运行费用论,通常电伴热运行 1-2年节省的费用就能收回投资。
自控温电伴热因本省根据敏感管壁(介质)的温度而自调发热量,是一种节能措施。应用最广泛的自控温电伴热线每米用电量为15W。管道全长为1000m,每小时用电量为1000×15/1000=15KW.h。当管道温度达到维持温度上限时,电伴热的发热量将逐渐减少,输出功率亦随之下降,从而电伴热的耗电量一般为额定功率的60%;厂用电价按0.60元/ KW.h计,运行日为100天(2400小时),则每年正常耗电费用为:(15×2400)×0.60×60%=12960元,自控温电热带与温控器配合使用时,不但可以精确维持管道或加热体的介质温度,还可以大大的降低运行费用成本。
恒功率电热带单位长度的发热量恒定,使用的电热带越长输出的总功率越大。应用最广泛的恒功率电伴热线每米用电量为20W。管道全长为1000m,每小时用电量为1000×20/1000=20KW.h。当管道温度达到维持温度上限时,输出功率随之进入稳定,从而电伴热的耗电量保持不变;厂用电价按0.60元/ KW.h计,运行日为100天(2400小时),则每年正常耗电费用为:(20×2400)×0.60=28800元,恒功率电热带与温控器配合使用时,也可精确维持管道或加热体的介质温度。
在正确维护下,电伴热系统使用寿命为8年或更长。
电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体 、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度 最先进、最有效的方法。电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解 决的问题,如:长输管道的伴热,窄小空间的伴热;无规则外型的设备(如泵)伴热;无蒸汽 热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。
常用电伴热针对不同的管道(罐体)可分为以下几种:
1. 自限温(自控温)电热带,此电热带随温度升高电阻变大功率变小,由于其启动时电流较大,所以使用长度一般不超过100米,电热带可随意剪切,电热带无论多长,通上额定电压都能发热。
2. 并联式电热带,此电热带两根(或三根)平行的绝缘铜绞线作为电源母线,PTC特性发热丝缠绕在骨架上,每隔一个发热节长度为母线交替连接,形成连续的并联电阻,此电热带使用长度10-800米左右。
3. 串联式电热带,此电热带将三根具有相同截面积,一定长度的平行绝缘铜绞线为电源母线和发热芯线,将其一端可靠短接,另一端接上380V(或设计的电压)电源,就形成了一个星形负载,根据焦耳一楞次定律:Q=0.24IRT电能转化为热能星形负载不断放出热量,形成一条连续的、发热均匀的电伴热带。根据实际情况需要,电伴热带的三相(单相)可以各自分开(分体式),也可以整合为一体。此电热带使用长度不能太短,一般使用500-2500米左右。
4. 高温电伴热带,此电热带由玻璃纤维或其它耐高温材料制成,耐温300℃以内,长度1-50米不等(由于其不可随意剪切,需找专业厂家设计)。
5. 硅橡胶电热带,此电热带可用于潮湿的、无爆炸性气体场所工业设备或实验室管箱,罐体和槽池,油桶(箱)的加热、伴热和保温,电热带长度1-15米(由于其不可随意剪切,需找专业厂家设计)
6. MI电缆,此电热带是金属线芯(发热体)、线芯周围紧密的环绕着矿物质氧化镁(绝缘层)及经过多次拉制过的金属管(通常是铜、钢或是不锈钢等)构成,连续工作温度可达250-590℃,短期工作温度可至1083℃,使长度18-680米(由于其不可随意剪切,需找专业厂家设计)。
在实际工程中如何选择电伴热带,要具体情况具体分析,不宜按油田区块划分,都选恒功率电伴热带,或都选自控温电伴热带,要从技术经济角度综合考虑,建议参照以下选型原则。
(1)在气分离缓冲罐及天然气分离器组成的油气分离区,地面油管道、油气分离缓冲罐排污管道、天然气分离器、液位计比较集中,对控制温度也较严,可以采用恒功率电伴热带,其中液位计采用单相恒功率电伴热带,其他采用三相恒功率电伴热带,这样可以用一套防爆配电箱、温控器进行统一控制,但配电箱、接线盒、温控器必须符合防爆要求。
(2)给水箱、给水管道一般远离防爆区,被伴热体不太集中,温度控制要求不高,只要使水温始终维持在一定范围内即可达到设计要求。因此,若采用自控温电伴热带,可以省去电伴热配件如配电箱、温控器等。
(3)在阀门弯头较多区域,可能出现交叉重叠式安装,因而不适宜安装恒功率电伴热带(有单独的电加热丝层),易选用自控温电伴热带。
(4)从设计、安装角度讲,恒功率电伴热带一般受节长限制, 若切割时未能找准一个节长,则该部分伴热带不起作用,这不仅影响管道的伴热效果,同时也造成成浪费;而自控温电伴热带可随意切割,能确保电伴热完整。
依据IEC1423标准向广大用户推荐以下简易测试方法:
1. 起动电流(is)或始动电流 设备:万用表、电源、插座(最好带开关),温度测试仪
测试步骤:
(1) 取1米长电缆(取3-4厘米作线头),电缆一头用绝缘带封头,一端要将导线剥出接插头。
(2) 在线路上串联万用表并调到(A-)10A档。
(3) 接通电源并读出瞬间最大电流值即电缆在当时温度环境下空气中的。
2. 标称功率 设备:万用表、电源、插座(最好带开关),温度测试仪、不锈钢水杯、保温材料
(1) 取1米长电缆(取3-4厘米作线头),接法同上。
(2) 水杯盛满水,把电缆缠绕在水杯上并保好保温,使电缆通电后体系温度保持不变5分钟。
(3) 接通电源,读出稳态(即电流值保持不变)电流值,记录温度,测量电源电压。
(4) 计算功率:P=UI 单位W/M
上述方法简单易做,但不精确,仅供参考。但在相同温度及环境条件下,可对不同厂家,相同规格,相同功率的电热带等产品进行对照、比较。
3. 绝缘电阻
取3米长电缆,用DC,2.5KV兆欧表测量。没有金属编织的电缆,试验时应浸入水中,电压应施加在两根导体连在一起对水之间,兆欧表要均匀摇至1分钟再读数。绝缘电阻不小于500ΩM
1、自控温电伴热的核心材料PTC半导电塑料,其电阻值随温度的升高而相应的增加,但是当温度上升到一定的数值时(这个温度值即为门槛温度,事实上它是可以根据需要进行调节大小的),电阻突然剧增,从而阻断电流停止加热;当温度低于门槛温度时,PTC材料的电阻自动下降导通电流,继续加热。从而使系统维持在一个稳定的温度值。 基本型自调控电伴热线(伴热电缆)由PTC芯带和绝缘层组成。将PTC材料厚度均匀、连续地挤包(或缠绕)在平行的金属线芯(亦称母线)上,制成的扁型带即为PTC芯带。在他的外面包裹一层聚乙烯高分子或聚氯乙烯绝缘层。而当环境有强化或耐腐蚀要求时,可以加一层编织层或氟聚合物外被。芯带一端的两根导电母线与电源接通时,电流便从一根母线横向流过并联的PTC材料层到达另一根母线,构成并联回路。一定长度的芯带在一定的温度下有一定的电阻,并具有PTC特性。电流流经并联的PTC材料层时产生焦耳热,使芯带发热升温。同时芯带的热量通过电缆绝缘层向温度低的被加热体系传递,以补偿体系向环境散失的热量。
2、恒功率型电伴热带在通电后功率输出是一直恒定的,不会随外界环境、保温材料、伴热的材质变化而变化,而其功率的输出或停止通常由温度传感器来控制。
A:并联式恒功率电伴热带其电阻丝是并联连接方式,其工作时是靠电阻丝发热对管道进行加热。
原理:两根相互平行的度镍铜绞线包覆在氟化物绝热层中,作为电源母线,并且在内绝热层外缠绕镍铬合金电热丝,每隔一个固定距离即将电热丝进行焊接,形成一个连续的并联电阻,当电源铜母线通电以后,各并联电阻随之发热,即形成一个连续发热的电热带,可任意剪切。
B:串联式恒功率电伴热带其电阻丝是串联连接方式,其工作时是靠电阻丝发热对管道进行加热。
3、矿物绝缘加热电缆是一种以金属作为外护套,电热材料作为发热元件,氧化镁粉作为绝缘的特殊加热电缆。矿物绝缘加热电缆的热发热量与工作电压、发热芯的截面及电缆的长度有关。
自控温电伴热方案主要通过自控温电伴热线完成。自控温电伴热线由导电塑料和2根平行母线加绝缘层、金属屏蔽网、防腐外套构成。其中由塑料加导电碳粒经特殊加工而成的导电塑料是发热核心。当伴热线周围温度较低时,导电塑料产生微分子收缩,碳粒连接形成电路使电流通过,伴热线便开始发热;而温度较高时,导电塑料产生微分子膨胀,碳粒逐渐分开,导致电路中断,电阻上升,伴热线自动减少功率输出,发热量便降低。当周围温度变冷时,塑料又恢复到微分子收缩状态,碳粒相应连接起来形成电路,伴热线发热功率又自动上升。由于整个温度控制过程是由材料本省自动调节完成的,其控制温度不会过高也不会过低。因此电伴热所具有的良好特性是其他伴热系统所无法比拟的。
1.1 单相并联式恒功率电热带内部结构:
两根平行的绝缘铜绞线作为电源母线,PTC特性发热丝缠绕在骨架上,每隔一个发热节长度为母线交替连接,形成连续的并联电阻。母线通上单相220V电源,各并联电阻发热。
1.2 单相并联式恒功率电热带外观:
A-芯线
B-芯线绝缘层氟塑料
C-骨架层
D-发热丝
E-绝缘护套氟塑料
F-金属屏蔽网
G-外护套氟塑料
2.1 三相并联式恒功率电热带内部结构:
三根并行绝缘铜绞线作为电源母线,每隔一个发热节长度依次与电源母线a-b-c-a-b-c交替循环连接,在每三相间形成连续的并联电阻,母线接上三相380V电源,各并联电阻发热。
2.2三相并联式三相电伴热带结构
A-芯线
B-芯线绝缘层氟塑料
C-骨架层 compages
D-发热丝
E-绝缘护套氟塑料
F-金属屏蔽网
G-外护套氟塑料
3.1 串联式电热带结构原理及外观
三根具有相同截面积,一定长度的平行绝缘铜绞线为电源母线和发热芯线,将其一端可靠短接,另一端接上380V电源,就形成了一个星形负载,根据焦耳一楞次定律:Q=0.24IRT电能转化为热能星形负载不断放出热量,形成一条连续的、发热均匀的电伴热带。根据实际情况需要,电伴热带的三相(单相)可以各自分开(分体式),也可以整合为一体。
1.三根恒功率串联式电热带 2.双根恒功率串联式电热带 3. 单根恒功率串联式电热带
A-线芯
B-母线绝缘层
C-外护套
D-金属屏蔽网
E-加强(防)护套
自控温伴热电缆加热时能够自动限定电缆的工作温度;自控温伴热电缆能随被加热体系的温度变化自动调整输出功率而无需外加设备;电缆可以任意裁短或在一定范围内接长使用,而上述性能不变;允许交叉重叠缠绕敷设而无过热及烧毁之忧;伴热管线温度均匀,不会过热,安全可靠;节约电能;间歇操作时,升温启动快速;安装及运行费用低;安装使用维护简便;便于自动化管理;无环境污染;使用寿命长等特点。
恒功率并联电热带单位长度的发热量恒定,使用的电热带越长输出的总功率越大,管道维持温度高。该电热带在现场也能按实际长度任意剪切。此外,电热带因富有柔软行可以很方便的紧贴在管道表面,电热带外层金属屏蔽网可以防止静电产生并安全接地,它不仅提高了电热带的整体强度,还起着传热和散热的作用。
根据高分子PTC材料的组成不同,自控温加热电缆分为低温型和高温型两类。
市场上常见的有以聚烯烃为基材的65℃温度等级的加热电缆和以含氟材料为基材的110℃和150℃加热电缆。此处的温度等级定义为加热电缆所能有效应用的最高环境温度(MAXIMUMPIPE MAINTENANCE TEMPERATURE)。也可以理解为电缆能够长期稳定应用并产生有效加热功率输出的最高环境温度,超过规定温度等级,一方面由于电阻增高,电缆本身的输出功率很小,实际加热效率很低。另一方面,长期的超温使用,使电缆性能如:PTC特性,加热功率等劣化或衰减,会降低电缆的使用寿命和运行可靠性。但短期间断地暴露于超过温度等极的温度环境,也是可以的。因此,除上述温度等级外,自控温加热电线,还有另一个温度等级。如对于65℃温度等级的电缆,该温度等级为85℃,对于110℃温度等级的电缆,为130℃,而对于150℃电缆,则为230℃。然而此时的电缆有效输出功率已接近于零。
由于相关文献资料太少,许多人对于自控温加热电缆的温度等级有着错误的理解,认为它是指加热电缆的最高表面温度,因此,出现了45.65,85和105℃温度等级聚烯烃加热的说法。而实际上,由于电缆的输出功率与环境温度有关,而电缆的表面温度与测试时的环境温度,保温状态都有密切联系。因此,用表面温度来定义自控温加热电缆的温度等级是不科学,也是不准确的。我们需要记住的是,对于以聚烯烃为基材的加热电缆其最高连续使用温度应不超过65℃。
自控温加热电缆的输出功率是指在环境温度为摄氏10度条件下,单位长度电缆的输出功率。按加热功率输出分类,自控温加热电缆有高中低三种类型。一般而言,加热功率小于35瓦/米的为低功率加热电缆;加热功率大于35瓦/米而小于70瓦/米的为中功率加热电缆;而加热大于65瓦/米的为高功率加热电缆。
通用型加热电缆:是指由铜导线,高分子PTC材料和单层阻燃护套所组成的加热电缆。主要应用于一般场合下的管网的加热或伴热。防爆增强型加热电缆:是在通用型电缆的外层再复合一层金属网,这种结构电缆可有效消除静电和抵御外来机械碰境。主要应用于具有防爆要求的场所。
防腐防爆增强型:这种结构的电缆是在防爆增强型加热电缆的金属网外层,再复合上一层含氟材料。具有这种结构的加热电缆可有效地防止和抵御静电,机械碰撞和各种腐蚀性介质。主要应用于环境恶劣或有易燃易爆物品的场所。 按电缆用途分类
普通型加热电缆:这是一种二芯结构的加热电缆。由两根平行金属导线外敷高分子PTC材料和阻燃护套材料或金属网和氟材料护套所构成。由于受导体直径和沿长电压降的影响,这种电缆的连接使用长度一般不超过200米。
超长型加热电缆这是一种特殊结构的五芯或六芯加热电缆。除由高分子PTC材料包敷的两根平行导线外,同方向还另布3-4根带绝缘护套的金属导线,外加金属铠装。用于传送电能。这种特殊的结构,使电缆的最长连续使用长度可超过1100米,因而可应用于输油输气道的伴热和油田井下伴热。
安全型加热电缆?这则一种三芯加热电缆。在电缆中,在阻燃护套内沿长度方向另布一根监视电线。监视电线可随时把沿线的输出功率异常变化,过电流情况,局部损伤等信息及时传送到中央控制室,便于及时了解沿线加热情况,保证电缆的安全可靠运行。
低电压型:是指适用电压范围在12-36V之间的加热电缆。这类电缆一般加热功率较低,连续使用长度不超过10米。使用时需严格遵守电压要求,否则,可导致电缆着火等意外事故。应用范围主要为民用保健品及车船用加热坐椅等。
中电压型:是指适用电压在100-660V之间的加热电缆。我们一般所说的自控温加热电缆均指这一类电缆。在实际应用中,120和250V电缆可互换,但120V加热电缆的最大连续使用长度通常为240V的一半。这类电缆的连续应用长度通常不超过200米。
高压型电缆:是指适用电压在380-650V之间的加热电缆。它们主要为前面所提及的5-6芯加热电缆。连续应用长度通常大于500米。
任意型号规格伴热电缆,如自限温电热带,恒功率电热带等
防爆电源接线盒:用来保护电热带的安全接线,接头的好坏关系到电伴热系统的安全使用与使用寿命,通用的型号是FDZ
防爆中间接线盒:便于在电热带在复杂管线管路上的连接。在保证不超过最大使用长度的前提下,亦可当做电源接线盒使用,通用的型号是FIH和FTH等
尾端接线盒:自限温电热带的一段连接电源,另外一段使用尾端接线盒进行密封处理即可,或者使用热缩套管,切忌不可将电热带两段进行连接,不可将两根平行母线进行连接FZH
防爆温度控制器:利用热电偶温控探头感测伴热带温度,手动精确控温,PTC自限温电热带可以不安装,利用发热丝进行发热的如恒功率电伴热必须使用温控器来限温,通用型号BJW
铝箔胶带:用来扩大电伴热带的受热面积,增大聚热绝热范围,提高伴热效率
热敏胶带:用来给电伴热系统起到固定的作用,一般是将电热带黏贴固定在伴热管道或相关设备上,也有使用不锈钢扎带进行固定
警示标签:在施工完毕后,黏贴在伴热管线外表面,作为示意及通电示警
安装施工是用好伴热电缆的关键,安装前仔细阅读并由专业电工负责。安装施工大体分为:
1.确认是否具备安装条件;2.安装伴热电缆及终端;3.安装电源盒;4.测量绝缘电阻;5.接电源和开关;6.通电实验;7.做电伴热标记;8.重复4,6;9.做保温及防水;10.验收。
伴热电缆安装应在主体工程完成后进行,即在伴热电缆安装处的上空不再进行焊接,吊装等操作,以避免砸伤损坏,确认需要伴热的管道或设备已经试漏,清扫,其表面的毛刺,尖锐或边状突起均已打磨平整。
伴热电缆应按管道长度分布,一面物料在无伴热电缆处降温凝结,伴热电缆的长度应长于被伴热管道。安装时应效验所用伴热电缆长度(包括并联的各分支总长度),是否超过设计长度或允许的最大使用长度。敷设时应尽可能使伴热电缆平整地紧贴在管道或容器表面,用聚酯带或铝箔胶带固定,严禁用细丝捆扎,胶带间距小于30mm,如遇法兰,阀门等尖锐突起部分,应注意保护。在水平管道上安装时,可敷设在管道下部45度处,伴热电缆安装时允许多次交叉重叠,但尽可能减少扭曲。为强化伴热效果,可在伴热电缆的外边粘贴一层铝箔胶带,在容器上安装时伴热电缆应缠绕在容器的中下部,通常不超过2/3。安装完成后,应对每根伴热电缆进行绝缘测试,伴热电缆线芯与管道或容器间的电阻不得小于20MΩ,否则应找出原因后再接电源和保温,此测试应多次进行。测试结果应记录备查。
首先检查各分电源线的截面应略大于伴热电缆的线芯截面,总电源线应能承截伴热电缆总和在最低环境温度的总电流,每根伴热电缆应有自己的开关,熔断器或单极断路器。在剥伴热电缆线芯时,应避免断股减少截面,引起过载。
1.伴热电缆与电源盒的连接:在易燃易爆场合,必须采用配套的防爆电源接线盒,一般场合可直接将伴热电缆接至闸刀开关上,也可将导线绞接或焊接后用快干硅胶和热缩套管密封,绞接处不得短于30mm,焊接处不得短于10mm。
2.伴热电缆的分叉:在易燃易爆场合必须采用配套的防爆直型接线盒,一般场合也可以采用绞接或焊接。
3.伴热电缆的接长:在易燃易爆场合必须采用配套的防爆直型接线盒,一般场合也可以采用绞接或焊接。接长时请注意不得超过最大使用长度。
4.终端:在易燃易爆场合必须采用配套的终端密封盒,一般场合也可采用快硅胶和热缩套管密封。任何情况下均严格禁止将尾部线芯连接。
5.电源接线盒:T型,直型接线盒,终端均可用卡箍或尼龙扎带紧固在管道上,盒内的防水胶垫不得遗漏,盒内接线处应用快干硅胶防水,在做保温时应将接线盒置于保温层内,但必须在保温层处留下相应的标记。
做保温层和防水层是伴热电缆系统的重要组成部分,必须严格按照设计要求安装,尤其是室外,一旦雨水侵入层内,保温能力将大大下降,如遇护套破损,可能造成电击穿,发生火花或暗火。因此要加强现场管理,防止施工人员无意损坏伴热电缆,在绝缘测试合格应尽快安装保温层和防水层,安装时应防止金属薄板割破伴热电缆护套,固定铁皮的螺钉不得过长,一面刺破.
根据相关规范,结合工程实际情况,摸索制定了电伴热控制报警箱定位原则:① 依据配电室所在位置;②不影响其它电气设备的安装;③安装的墙为实墙,陶粒或空心砖墙要加装支架;④高低位置原则以易观察、易维修为佳。依据以上定位原则和电伴热系统管道布置情况,采用了两线伴热电缆控制报警箱。分别放置在站台上两侧的配电室或值班室及站厅层的配电室内,由配电室内的配电箱向控制箱供220V电压。每台伴热电缆控制箱连接2条双导发热电缆,向站台板下及站厅层大厅吊顶内的消防给水管道加热。对于伴热控制报警箱要严格按设计要求安装,
箱体安装高度、垂直误差等均应控制在规范允许的范围内。箱内配线应整齐美观、走向合理、绑扎成束并适当固定。导线与电器的连接头必须符合规范的规定即多股导线压接后应镀锡、单股导线按螺旋方向盘圈。采用螺栓顶按时应双线径插入,线端绝缘边裸露导体长度应不大于3 mm。25 m㎡ 及以上的截面的导线,不宜采用开口式接线端子。控制电器可动触点端必须是负荷端。各配电支路、控制回路应在专设的铭牌框内标注明确。
1、电热带在储存、搬运、安装及使用时不许扭曲,不许反复弯折,严禁损坏外护套, 破坏绝缘。
2、安装时要避开易燃易爆介质可能积聚的沟坑暗角等部位。
3、选用电热带时注意其防爆温度组别,不得超过易燃介质闪点或自燃温度的75%。
4、施放电热带时不要打硬折或长距离的在地面拖拉。
5、电热带的安装必须在介质管路系统全部安装结束,并经水压或气密试验合格后进行。保温层的施工必须在电热带全部安装、调试结束,送电正常后进行。
6、电热带安装时遇到锐利的边棱、锐角应打磨光滑或垫上铝胶带,以防破坏外绝缘层。
7、 电热带安装时最小弯曲半径原则上应不小于其厚度的5 倍。
8、电热带安装时应紧贴在管道上,尽可能采用铝胶带粘贴,途径处的油污和水分,应处理干净,每隔0. 5~0. 8 m ,用耐热胶带将电热带沿径向固定。
9、安装电热带附件时,应留一定余量,以备检修使用,对于PTC 并联式电热带,因其是由许多段发热节并联组合而成, 所以其首尾各有几十厘米的冷端, 安装时应从发热的部位开始,首尾两端的发热体(尤其是并联式的发热丝) 应尽可能剪短,严禁外露,严禁与外编织网或管道接触。
10、除了自控温电热带外其它规格电热带安装时不允许交叉、重叠。
11、 接线时,电热带与附件要正确可靠连接,谨防短路,同时将编织网连接起来接地(接地电阻应小于4 8 )。
12、完成安装后,应进行绝缘测试,用500V 或1000 V 兆欧表测试,电热带线芯与编织网或金属管道间的绝缘电阻应不小于2MΩ。
13、如需对伴热管线进行蒸汽吹扫,必须在停电2 h 后进行,扫线温度不宜长期超过205℃ 。
14、若冰霜安装时必须遵循国家颁布的“爆炸危险场所电气安全规程”和“电气装置安装工程及验收规定”中的相关条文。
1) 所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。
2) 电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。
3) 安装前,应先按照电伴热系统图,逐一核对管道编号、管道规格、工艺条件、伴热电缆参数、
规格型号、电气设备和控制设备规格型号,确认无误后,才能进行安装。
4) 没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。
5) 电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或/和气密试验)检查合
格。
1) 伴热电缆安装时,不要在地面上拖拉,以免被锋锐物损坏。不要与高温物体接触,防止电焊
熔渣溅落到伴热电缆上。
2) 伴热电缆有良好的柔性,但不允许硬折,需要弯曲时,弯曲半径不得小于伴热电缆厚度的6倍。
3) 伴热电缆严禁用重物硬砸,如被砸 伴热电缆应重新进行电气测试,合格后才能使用。
4) 伴热电缆应与被伴热管道(或设备)贴紧并固定,以提高伴热效率。固定伴热电缆时应用专
用尼龙扎带,严禁用金属丝绑扎。
5)非金属管道应在管外壁与伴热电缆之间贴一层铝胶带,用来增大接触传热面积。
1、施工前必须了解所用电伴热带的结构、性能和安装要求。
2、电伴热带的安装调试和运行必须遵循国家颁布的GB50254-96《爆炸和火灾危险环境电气装置施工及验收规范》和GB50257—96《低压电器施工及验收规范》等有关条文。
3、各种电伴热带安装敷设时均有最小弯曲半径要求,如果过度弯曲将会损坏电伴热带。
4、沿管道平行敷设的电伴热带一般安装在管道下方,且与管道横截面的水平轴线呈45。角,若用2根电伴热带要对称敷设。
5、在容器上安装时,电伴热带应缠绕在容器中下部,通常不超过容器高度的2/3,一般为l/3。
6、非金属管道的电伴热,应在管外壁与电伴热带之间夹一金属片(铝箔),以提高伴热效果。
7、安装电伴热带要充分考虑管道附件和设备拆卸的可能性,确保电伴热带本身不损坏。
8、安装附件时,要求胶圈、垫圈、紧固件等齐全,安装正确、紧固,以防松动或盒内进水。
9、电伴热带外面的保温材料必须干燥,且要保证材料的质量和厚度。
10、在潮湿和腐蚀性环境,必须使用加强型或船用电伴热带。
11、保温材料安装后,必须立即包缠防水层,以防淋雨受潮。
12、电伴热带安装时一定要使用尾端盒,严禁尾端芯线连接造成短路。
13电伴热带的最大敷设使用长度应小于50米。
14、对横向管道进行平行敷设时,应保证电伴热带紧贴在管道的底部,这样在工作时才能更有效的传递热量,减少热损失。
15、同时还要注意防冻传感器要安装在管道的上部(即电伴热带的相反方向);不能将防冻传感器直接和电伴热带接触,这样就不能准确的检测到管道的实际温度。
16、采用其他敷设方式时,同样要注意防冻传感器的安装位置,将其放在管道温度最低点上为最佳。
17、施工过程中,要注意检查电伴热带的表面不能有划伤、裂痕等,一旦发现立即更换。
18、除了安装智能仪表能够控制电伴热带工作以外,单独使用电伴热带防冻的,电源输入端必须安装漏电保护装置,不能直接使用普通的三端插头。接地保护线要与敷设电伴热带的管道可靠连接。这样,一旦电伴热带出现漏电现象时,漏电保护装置才能可靠的动作切断电源保证安全。
对管道恒温系统使用前应进行例行检查,对发现电热带、配件、保温层或防水层有损环者应立即进行更换和维修,摇表测试一般可在线路尾端进行,并将所有维修细节记录于维修记录单上。
故障迹象 可能成因 校正方法
断路器跳闸:
1.加热系统低温送电跳闸
2.线路短路跳闸
3.电热带接点或中间烧坏跳闸
4.先跳闸多次强制送电发生燃烧事故 1)断路器选型太小,电热带超长度使用,引起过负荷跳闸,最大使用长度受产品导电线芯截面的大小、标称功率大小、起动时的环境温度的高低或被伴热体系的温度高低所制约。
2)①尾端两导线绞接产生短路,②接点未做好绝缘或中间绝缘层因安装受损,如果首次使用时正常而中途出现短路,一般由下述原因造成:
a.首尾端绝缘层收缩,露出导电部分
b.使用吸水性绝缘胶布
c.产品绝缘层存在损坏隐患,如:硬性(铁丝)捆扎电钻钻孔等原因或安装时接点处增做的绝缘层未做防水,以上情况常常可以使用错误故当a、b、c情况在潮湿状态下都会出现短路。
3)电路未设有漏电保护,过流保护功能控制器件或该保护虽有,但分别先后或其中一项失灵或电热带无接地屏蔽或未接地形成控制回路,当上述1.2情况发生时,跳闸经多次送电则发生烧毁事故,最终的结果是电热带烧毁。
4) 电热带选型错误:
①选择无屏蔽型电热带。
②未选择专用产品,如浸泡在冷水中的产品,若按照常规设计选择参数,则可能发生过负荷时二项保护失控烧毁事故。 1)按设计书进行初步热工或电工设计,按安装书或注意事项对应事故成因进行安装或修正;
2)任何线路必须装有漏电保护和过流保护。
3)产品必须选用屏蔽型或屏蔽加强型,且产品与控制器应形成优良控制回路。
4)无屏蔽产品应属半成品,需另配安全措施的产品,否则存在安全隐患,属违规使用。
5)电路因鼓跳闸后,防爆区千万不能二次强送电,否则虽有过流保护,但隐患或原因不明时易发生烧毁等恶性事故。
6)防爆区推荐选择特种专利系列产品因该产品为全不燃材料。
系统发热量趋零或偏低 1)供电电压趋零或偏低;
2)部分配件没有连接上或电热带被切断;
3)部分配件里有不妥当的连接;
4)恒温器错误调校至关闭的状态;
5)管道处于高温状态电热带已损坏;
6)电热带曾曝露于过高的温度里已损坏;
1)将受潮湿的保温层更换上干燥的,并加上防水罩;
2)用二通补上所缺电热带,但总线路长度不可超过极限;
3)重新调校恒温控制器;
4)重新核对设计参数并做必要的调整;
系统发热量正常,但管道温度低于设计数值
1)保温层受了潮湿;
2)电热带用量不够或选型不当;
3)恒温控制器调校不正确;
4)在进行热损失计算时所用的参数有前后不一致; 1)将受潮湿的保温层更换上干燥的,并加上防水罩;
2)用二通补上所缺电热带,但总线路长度不可超过极限;
3)重新调校恒温控制器;
4)重新核对设计参数并做必要的
调整;
电热带不热或冷热不均
1)超过使用期限,此种情况一般是逐渐减弱;
2) a.未做保温
b.保温层过薄或厚薄不均
c.保温层未做防水处理,雨雪天保温层浸水,使电热带部分长时间处于低温或潮湿状态下并以较大的输出功率工作,一不节能,二衰减率不均;
3)电热带质量差
1)选择已经试用证明无误的并标有铭牌及各项技术指标和制造日期的各牌厂家的电热带;
2)严格按照产品使用说明要求进行安装;
3)沿保温层全线应做好防水层,使电热带在干燥状态下工作;
4)选择特种专利产品,认准品牌。
电热带初始使用效果与设计效果差距大
1)产品选型有误或技术参数选择偏低。
2)使用条件与设计选型依据不相符 。
3)假冒伪劣(低、中、高温产品外表很难鉴别)产品销售商欺骗用户所致。
1)严格按本 “指南”,初步设计和产品选型;
2)国内产品技术指标能达标的制造厂家仅1-2家,特种PTC制造厂家仅芜湖科华一家。选择特种专利产品,认准品牌,选择产品。
技术指标:
1、标准颜色:红色
2、温度范围:最高工作温度130±5℃;最高曝露温度150℃;最高承受温度:改良性聚烯烃105℃、阻燃聚烯烃105℃、含氟聚烯烃180℃、全氟材料205℃
3、施工温度:最低-40℃
4、热稳定性:由10℃至149℃间来回循环300次后,电缆发热量维持在90%以上。
5、弯曲半径:-20℃时为38.5mm;-30℃时为49.0mm
6、绝缘电阻:电缆长度100m,恒温水域75℃时;测试绝缘电阻最小值20MΩ,有屏蔽或防爆防护型,室温20℃时用2,500VDC在屏蔽层与导电线芯之间摇试1分钟,绝缘电阻最小值为1200MΩ。
整个系统安装完毕要进行全面系统的调试,确保系统正常安全工作。首先检查所有管道、所有配件均已正确安装,发热电缆外观是否完好无损。其后将全部回路的空气保护开关断开,用摇表检测每个回路并作好记录。通电前,要测量电源线是否接通,发热电缆是否接通,检查电伴热温度传感器是否连接正常,温度调节器是否连接正常等。通过测试检查系统启动是否自如,另外检查电源箱各开关、显示灯工作是否正常。通电试运行,调节电伴热工作温度,3次降低或提高工作温度,检查发热电缆是否正常伴热。观察3个伴热工作周期,记录每个周期时间。做事故报警实验即断路实验、漏电实验、高温低温实验,观察并记录实验过程。在寒冷环境温度下,要观察电伴热工作情况及周期。最后,系统测试完毕后填写调试报告。 电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度最先进、最有效的方法。电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解决的问题,如:长输管道的伴热,窄小空间的伴热;无规则外型的设备(如泵)伴热;无蒸汽热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。主要应用场所举例如下
▲ 工业民用水管的冬季防冻裂
▲ 工矿企业液体输送管线的保温和伴热
▲ 企业蒸汽输送管线的保温伴热
▲ 工矿企业压缩空气,煤气天然气输送管线的保温
▲ 城市消防系统的冬季防冻
▲ 工矿企业气液储存罐的保温和加热
▲ 工业民用管线阀门的冬季防冻
▲ 特殊仪器仪表的冬季保温
▲ 重要道路和场所的冬季除冰除雪
▲ 工业民用建筑的冬季取暖
1,.伴热带芯带导体
电伴热带是扁形长带,其导电芯丝优劣也直接关系到伴热带的好坏,通常导电芯线采用镀锡铜线,铜线的好坏直接影响保温效果,当然导体的好坏是由厂商来把关的,消费者如何辨别导体的好坏呢?伴热带的导体一般是由7股镀锡铜丝绞合而成,导体的使用量直接影响伴热带的成本价格,一些厂商为了降低成本,减小了铜的横截面积,瑞华根据多年客户反映的问题 做出了更为合理的设计 就是增大导体截面,采用7*0.52(1..5平方)的线芯,而现今电缆行业竞争激烈,市场上主流的伴热带线芯仍为7*0.43(1.0平方)的导体,这种伴热带有一个十分严重的弊端 就是启动电流过大,这也是下文将要提到的。
2.伴热带的启动电流
电热带PTC芯带是电热带的核心部位,一般厂家不易掌握其核心技术,其关键就是启动电流大小和衰退率,启动电流是指电热带接通电源时,瞬间产生的电流峰值。它对电热带的品质有着决定性意义,是反映电热带制造技术水平的关键参数。如果起动电流较大,那么单一电源的电热带使用长度相应就会减短,同时,每次起动时,还会破坏PTC层与导电线芯的电接触界面,缩短电热带的使用寿命,并存在很大的安全隐患。国内大部分厂家的产品起动电流一般在0.6~1.2A/m左右,美国瑞侃公司的产品在0.5A/m以下,而我们公司经过技术改良生产的瑞华牌电热带,低温电热带起动电流均能控制在0.3A/m以下,中温电热带起动电流均能控制在0.3A/m左右,达到国际科技领先水平,所以请广大用户朋友们在选购电热带时,务必弄清起动电流这个重要的技术参数,条件允许的情况下,最好自己动手测试一下,尽量选购起动电流较小的产品,以免给自己和公司造成不必要的损失。电伴热专家友情提示!
3.PTC辐照工艺
1、电热带PTC芯带制成后需要经过辐照交联才能具有最优PTC效应,交联的好坏,决定了芯带性能的稳定性及使用寿命。国内较为普遍的是采用高能电子辐照交联,按PTC材料体系来确定适宜的辐照剂量,另外剂量率不宜过大,辐照时线速度也应均匀,并控制好运行的张力和摩擦力。国内部分厂家电热带并未经过辐照交联,这样看似厂家为用户节约了成本,谁知这其中存在的很大的安全隐患。未经辐照交联的绝缘层就耐热性和抗老化性来说较很差,时间一长容易出现漏电、短路、破坏PTC芯带的性能,大大缩短了电热带的使用寿命。而我公司推出的瑞华牌电热带,则是经过整体辐照交联,有较好的耐热性和抗老化性。在使用过程中,不仅延长了电热带的使用寿命,还提高了它的安全性。那么如何区分电热带的辐照过程呢?首先我们可以从电热带的绝缘层表面来观察一下情况;经过整体辐照的电热带绝缘层有的硬度,而只辐照芯带的电热带绝缘层比较柔软,请消费者注意!其次,另外整体辐照的电热带其绝缘层中不可以来回抽动,(电热带其绝缘层中可以来回抽动的,不属于优质电热带)。同时,这样的电热带通电发热时,未经辐照的绝缘层收缩性较大,由于绝缘层的受缩,使半导体PTC芯带曝露出来,这样很容易出现漏电、短路,存在很大的安全隐患
电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度最先进、最有效的方法。电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解决的问题,如:长输管道的伴热,窄小空间的伴热;无规则外型的设备(如泵)伴热;无蒸汽热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。主要应用场所举例如下
▲ 工业民用水管的冬季防冻裂
▲ 工矿企业液体输送管线的保温和伴热
▲ 企业蒸汽输送管线的保温伴热
▲ 工矿企业压缩空气,煤气天然气输送管线的保温
▲ 城市消防系统的冬季防冻
▲ 工矿企业气液储存罐的保温和加热
▲ 工业民用管线阀门的冬季防冻
▲ 特殊仪器仪表的冬季保温
▲ 重要道路和场所的冬季除冰除雪