更新时间:2024-10-01 14:11
早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。
20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展,这之中太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达80万千瓦,假如把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6×1012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。
20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。美国是最早制定光伏发电的发展规划的国家。1997年又提出“百万屋顶”计划。日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。而德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。
世界光伏组件在1990年——2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。
2006年的光伏行业调查表明,到2010年,光伏产业的年发展速度将保持在30%以上。年销售额将从2004年的70亿美金增加到2010年的300亿美金。许多老牌的光伏制造公司也从原来的亏本转为盈利。
据预测,太阳能光伏发电在21世纪会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。
2015年7月初,浙江省东阳市横店东磁20.7兆瓦屋顶光伏电站项目通过了国家发改委的验收,作为温室气体自愿减排项目予以备案,今后可参与温室气体排放量的交易。
位于陕西科技大学教学楼顶的屋顶光伏电站,是目前国内高校装机容量最大的屋顶光伏电站,自2012年11月起开始建设至2013年2月正式并网发电,迄今已累计发电150多万度,累计减排二氧化碳1500多吨,年均发电量60多万度。
2015年12月2日,联合光伏公布,将收购总装机容量约20兆瓦的两个光伏电站项目,这两个光伏电站分别来自新疆维吾尔自治区五家渠市和河北省唐山市,预期分别于12月底及2016年第一季实现并网并投产。总金额不超过3.56亿人民币,将以内部资源及外部融资拨付。
光伏发电系统分为独立光伏系统和并网光伏系统。独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。
并网光伏发电系统是与电网相连并向电网输送电力的光伏发电系统。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。
系统设备
光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。其部分设备的作用是:
在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。在光生伏特效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。
其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。
是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。
是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。
由于相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,如果太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。世界上通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,也就是靠计算太阳位置以实现跟踪。采用的是电脑数据理论,需要地球经纬度地区的的数据和设定,一旦安装,就不便移动或装拆,每次移动完就必须重新设定数据和调整各个参数;原理、电路、技术、设备复杂,非专业人士不能够随便操作。河北某太阳能光伏发电企业独家研发出了具有世界领先水平、成本低廉、简单易用、不用计算各地太阳位置数据、无软件、可在移动设备上随时随地准确跟踪太阳的智能太阳跟踪系统。该系统是国内首家完全不用电脑软件的太阳空间定位跟踪仪,具有国际领先水平,能够不受地域和外部条件的限制,可以在-50℃至70℃环境温度范围内正常使用;跟踪精度可以达到±0.001°,最大限度的提高太阳跟踪精度,完美实现适时跟踪,最大限度提高太阳光能利用率。可以广泛的使用于各类设备的需要使用太阳跟踪的地方,该自动太阳跟踪仪价格实惠、性能稳定、结构合理、跟踪准确、方便易用。把加装了智能太阳跟踪仪的太阳能发电系统安装在高速行驶的汽车、火车,以及通讯应急车、特种军用汽车、军舰或轮船上,不论系统向何方行驶、如何调头、拐弯,智能太阳跟踪仪都能保证设备的要求跟踪部位正对太阳!
光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
太阳能光伏组件将直射太阳光转化为直流电,光伏组串通过直流汇流箱并联接入直流配电柜,汇流后接入逆变器直流输入端,将直流电转变为交流电,逆变器交流输出端接入交流配电柜,经交流配电柜直接并入用户侧。
国产晶体硅电池效率在10至13%左右(应该是14%至17%左右),国外同类产品效率约12至14%。由一个或多个太阳能电池 片组成的太阳能电池板称为光伏组件。光伏发电产品主要用于三大方面:一是为无电场合提供电源,主要为广大无电地区居民生活生产提供电力,还有微波中 继电源、通讯电源等,另外,还包括一些移动电源和备用电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草坪灯等;三是并网发电,这 在发达国家已经大面积推广实施。我国并网发电还未起步,不过,2008年北京奥运会部分用电将会由太阳能发电和风力发电提供。
理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。
①无枯竭危险;
②安全可靠,无噪声,无污染排放外,绝对干净(无公害);
③不受资源分布地域的限制,可利用建筑屋面的优势;
④无需消耗燃料和架设输电线路即可就地发电供电;
⑤能源质量高;
⑥使用者从感情上容易接受;
⑦建设周期短,获取能源花费的时间短。
①照射的能量分布密度小,即要占用巨大面积;
②获得的能源同四季、昼夜及阴晴等气象条件有关;
③给电网带来波动性;
④大量电力电子元件的接入,带来谐波污染,需要去谐波装置。
光伏发电的成本仍然在1.4-2元/千瓦时,如果仍然坚持这个价格是不符合市场发展规划的。光伏发电可以减少污染气体排放。光伏发电将太阳能直接转换为电能的技术称为光伏发电技术。在国际上,光伏发电技术的研究已有100多年的历史。这一能源高端产品已经成熟。我国于1958年开始研究太阳电池,1971年首次成功地应用于我国发射的东方红二号卫星上。1973年开始将太阳电池用于地面。2002年,国家有关部门启动“送电到乡工程”,在西部七省区的近800个无电乡所在地安装光伏电站,该项目拉动了我国光伏工业快速发展。截止到2004年底,我国太阳电池的累计装机已经达到6.5万千瓦。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设周期短的优点。
光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和铜铟镓硒薄膜电池等。
中国太阳能资源非常丰富,理论储量达每年17000亿吨标准煤,太阳能资源开发利用的潜力非常广阔。中国地处北半球,南北距离和东西距离都在5000公里以上。在中国广阔的土地上,有着丰富的太阳能资源。大多数地区年平均日辐射量在每平方米4千瓦时以上,西藏日辐射量最高达每平米7千瓦时。年日照时数大于2000小时。与同纬度的其他国家相比,与美国相近,比欧洲、日本优越得多,因而有巨大的开发潜能。
中国太阳电池的研究始于1958年,1959年研制成功第1个有实用价值的太阳电池。中国光伏发电产业于20世纪70年代起步,1971年3月首次成功地应用于我国第2颗卫星上,1973年太阳电池开始在地面应用,1979年开始生产单晶硅太阳电池。20世纪90年代中期后光伏发电进入稳步发展时期,太阳电池及组件产量逐年稳步增加。经过30多年的努力,21世纪初迎来了快速发展的新阶段。
中国的光伏产业的发展有2次跳跃,第一次是在 20世纪80年代末,中国的改革开放正处于蓬勃发展时期,国内先后引进了多条太阳电池生产线,使中国的太阳电池生产能力由原来的3个小厂的几百千瓦一下子上升到6个厂的4.5兆瓦,引进的太阳电池生产设备和生产线的投资主要来自中央政府、地方政府、国家工业部委和国家大型企业。第二次光伏产业的大发展在 2000年以后,主要是受到国际大环境的影响、国际项目/政府项目的启动和市场的拉动。2002年由国家发改委负责实施的“光明工程”先导项目和“送电到乡”工程以及2006年实施的送电到村工程均采用了太阳能光伏发电技术。在这些措施的有力拉动下,中国光伏发电产业迅猛发展的势头日渐明朗。
到2007年年底,中国光伏系统的累计装机容量达到10万千瓦(100MW),从事太阳能电池生产的企业达到50余家,太阳能电池生产能力达到290万千瓦(2900MW),太阳能电池年产量达到1188MW,超过日本和欧洲,并已初步建立起从原材料生产到光伏系统建设等多个环节组成的完整产业链,特别是多晶硅材料生产取得了重大进展,突破了年产千吨大关,冲破了太阳能电池原材料生产的瓶颈制约,为中国光伏发电的规模化发展奠定了基础。2007年是中国太阳能光伏产业快速发展的一年。受益于太阳能产业的长期利好,整个光伏产业出现了前所未有的投资热潮,但也存在诸如投资盲目、恶性竞争、创新不足等问题。
2009年6月,由中广核能源开发有限责任公司、江苏百世德太阳能高科技有限公司和比利时Enfinity公司组建的联合体以1.0928元/度的价格,竞标成功我国首个光伏发电示范项目——甘肃敦煌10兆瓦并网光伏发电场项目,1.09元/千瓦时电价的落定,标志着该上网电价不仅将成为国内后续并网光伏电站的重要基准参考价,同时亦是国内光伏发电补贴政策出台、国家大规模推广并网光伏发电的重要依据。
2013年9月27日中国建材集团与乌克兰绿色科技能源公司日前签署了1吉瓦(相当于1000兆瓦)的光伏电站框架协议。
2013年12月4日,龙羊峡水光互补320兆瓦并网光伏电站开始启动试运行,这是目前全球最大的单体并网光伏电站,于2013年3月25日在共和光伏发电园区开工建设。
据悉,此项目占地约9.16平方公里,生产运行期为25年。工程建成投运后,年平均上网电量约为4.83亿千瓦时,对于承担西北电网第一调频调峰的龙羊峡水电站来说,水光互补项目将打破多年已形成的整个梯级联合调度格局。
2015年7月9日水电三局顺利中标云南昭通宁边20兆瓦光伏电站施工项目,项目合同额为1862.87万元。当日,该项目道路修建工程顺利开工。
此次云南省昭通市昭阳区宁边20兆瓦光伏电站工程建筑安装工程共分为3个标段,分别为:光伏场区土建及设备安装工程(Ⅰ包)、开关站土建及电气安装工程(Ⅱ包)、送出工程(Ⅲ包)等均由水电三局进行施工。
云南香格里拉300MW光伏电站计划2016年开工,该项目主要建设内容为:项目总占地面积为7800亩,拟装机容量为300MW,建成后年产值约为3.6亿,项目总投资为270000万元。
甘肃省3522巉晖线(110千伏巉口变至明晖光伏电站)及明晖定西光伏电站全站设备近日启动成功,开始24小时试运行,该电站是甘肃省定西电网内首座投运的光伏电站。
2016年2月上旬,湖北省首座漂浮式光伏电站——枣阳熊河水库漂浮光伏电站成功并网发电,标志着湖北省水面光伏发电试验取得圆满成功。
2016年2月,陕西省40兆瓦生态农业光伏电站成功并网并正式供电,源源不断的清洁电力通过110千伏升压站输送到国家电网。
2016年我国累计光伏装机量达到4318万千瓦,首次超过德国,跃居世界第一。这是我国在新能源领域继风电装机跃居全球第一之后的又一次飞跃。
2023年4月12日,“长安汽车光伏电站”落成仪式在重庆长安汽车全球研发中心举行。该光伏电站位于长安汽车厂区内,实施了37MW的分布式光伏项目。
2023年6月,中石油塔里木油田且末10万千瓦光伏发电项目正式并网发电,每年将供应绿色电力2.1亿千瓦时。这个项目位于新疆巴音郭楞蒙古自治州且末县境内,地处塔克拉玛干沙漠腹地。项目总占地面积3916亩,由32个光伏方阵组成,并配有10兆瓦储能装置及一座110千伏升压站。
2023年8月,上海石化新建南随塘河光伏电站、碳纤维事业部北区光伏电站(腈纶装置区域)、碳纤维事业部南区光伏电站(碳纤维区域)3座光伏电站,光伏组件敷设的有效面积达9万平方米,总装机容量达到14.02兆瓦。
二〇〇九年七月十六日国家三部委财政部、科技部、国家能源局联合印发了《关于实施金太阳示范工程的通知》,随后又公布了具体的《金太阳示范工程财政补助资金管理暂行办法》决定综合采取财政补助、科技支持和市场拉动方式,加快国内光伏发电的产业化和规模化发展,并计划在2-3年内,采取财政补助方式支持不低于500兆瓦的光伏发电示范项目;各种利好都给中国光伏发电产业注入了强劲的生命活力!希望在不远的将来,我国的光伏发电整体竞争力能够达到国际领先水平,光伏发电电力供应量在国内总电力供应中的占比能够达到更高水平,从而更加有力的推动我国经济结构转型和能源结构优化!
2013年7月15日出台的《国务院关于促进光伏产业健康发展的若干意见》提出了有序推进光伏电站建设,特别明确“对光伏电站,由电网企业按照国家规定或招标确定的光伏发电上网电价与发电企业按月全额结算”。从责任主体、结算方式的确认一举化解了光伏电站开发过程中的最大障碍。随后,财政部发布《关于分布式光伏发电实行按照电量补贴政策等有关问题的通知》,其明确,国家对分布式光伏发电项目按电量给予补贴,补贴资金通过电网企业转付给分布式光伏发电项目单位。
国家能源局于2013年11月26日发布有效期为3年的《光伏发电运营监管暂行办法》,规定电网企业应当全额收购其电网覆盖范围内并网光伏电站项目和分布式光伏发电项目的上网电量,明确了能源主管部门及其派出机构对于光伏发电并网运营的各项监管责任,光伏发电项目运营主体和电网企业应当承担的责任,从而推进光伏发电并网有序进行。正文如下:
第一章 总则
第一条 为加强监管,切实保障光伏发电系统有效运行,优化能源供应方式,促进节能减排,根据《中华人民共和国可再生能源法》、《电力监管条例》等法律法规和国家有关规定,制定本办法。
第二条 本办法适用于并网光伏电站项目和分布式光伏发电项目。
第三条 国务院能源主管部门及其派出机构依照本办法对光伏发电项目的并网、运行、交易、信息披露等进行监管。
任何单位和个人发现违反本办法和国家有关规定的行为,可以向国务院能源主管部门及其派出机构投诉和举报,国务院能源主管部门及其派出机构应依法处理。
第四条 光伏发电项目运营主体和电网企业应当遵守电力业务许可制度,依法开展光伏发电相关业务,并接受国务院能源主管部门及其派出机构的监管。
第二章 监管内容
第五条 国务院能源主管部门及其派出机构对光伏发电项目运营主体和电网企业电力许可制度执行情况实施监管。
除按规定实施电力业务许可豁免的光伏发电项目外,其他并网光伏发电项目运营主体应当申领电力业务许可证。持证经营主体应当保持许可条件,许可事项或登记事项发生变化的,应当按规定办理变更手续。
第六条 国务院能源主管部门及其派出机构按照有关规定对光伏发电电能质量情况实施监管。
光伏发电并网点的电能质量应符合国家标准,确保电网可靠运行。
第七条 国务院能源主管部门及其派出机构对光伏发电配套电网建设情况实施监管。
接入公共电网的光伏发电项目,接入系统工程以及接入引起的公共电网改造部分由电网企业投资建设。接入用户侧的光伏发电项目,接入系统工程由项目运营主体投资建设,接入引起的公共电网改造部分由电网企业投资建设。
第八条 国务院能源主管部门及其派出机构对光伏发电并网服务情况实施监管。
电网企业应当按照积极服务、简洁高效的原则,建立和完善光伏电站项目接网服务流程,并提供并网办理流程说明、相关政策解释、并网工作进度查询以及配合并网调试和验收等服务。
电网企业应当为分布式光伏发电接入提供便利条件,在并网申请受理、接入系统方案制订、合同和协议签署、并网验收和并网调试全过程服务中,按照“一口对外”的原则,简化办理程序。
电网企业对分布式光伏发电项目免收系统备用容量费和相关服务费用。
第九条 国务院能源主管部门及其派出机构对光伏发电并网环节的时限情况实施监管。
光伏电站项目并网环节时限按照国家能源局有关规定执行。
分布式光伏发电项目,电网企业自受理并网申请之日起25个工作日内向项目业主提供接入系统方案;自项目业主确认接入系统方案起5个工作日内,提供接入电网意见函,项目业主据此开展项目备案和工程设计等后续工作;自受理并网验收及并网调试申请起10个工作日内完成关口电能计量装置安装服务,并与项目业主按照要求签署购售电合同和并网协议;自关口电能计量装置安装完成后10个工作日内组织并网验收及并网调试,向项目业主提供验收意见,调试通过后直接转入并网运行,验收标准按国家有关规定执行。若验收不合格,电网企业应向项目业主提出解决方案。
第十条 国务院能源主管部门及其派出机构对光伏发电项目购售电合同和并网协议签订、执行和备案情况实施监管。
电网企业应与光伏电站项目运营主体签订购售电合同和并网调度协议,合同和协议签订应当符合国家有关规定,并在合同和协议签订10个工作日内向国务院能源主管部门派出机构备案。光伏电站购售电合同和并网调度协议范本,国务院能源主管部门将会同国家工商行政管理部门另行制定。
电网企业应按照有关规定及时与分布式光伏发电项目运营主体签订并网协议和购售电合同。
第十一条 国务院能源主管部门及其派出机构对电力调度机构优先调度光伏发电的情况实施监管。
电力调度机构应当按照国家有关可再生能源发电上网规定,编制发电调度计划并组织实施。电力调度机构除因不可抗力或者有危及电网安全稳定的情形外,不得限制光伏发电出力。
本办法所称危及电网安全稳定的情形,应由国务院能源主管部门及其派出机构组织认定。
光伏发电项目运营主体应当遵守发电厂并网运行管理有关规定,服从调度指挥、执行调度命令。
第十二条 国务院能源主管部门及其派出机构对电网企业收购光伏发电电量的情况实施监管。
电网企业应当全额收购其电网覆盖范围内光伏发电项目的上网电量。因不可抗力或者有危及电网安全稳定的情形,未能全额收购的,电网企业应当及时将未能全额上网的时间、原因等信息书面告知光伏发电项目运营主体,并报国务院能源主管部门派出机构备案。
第十三条 国务院能源主管部门及其派出机构对光伏发电并网运行维护情况实施监管。
并网光伏电站项目运营主体负责光伏电站场址内集电线路和升压站的运行、维护和管理,电网企业负责光伏电站配套电力送出工程和公共电网的运行、维护和管理。电网企业安排电网设备检修应尽量不影响并网光伏电站送出能力,并提前三个月书面通知并网光伏电站项目运营主体。
分布式光伏发电项目运营主体可以在电网企业的指导下,负责光伏发电设备的运行、维护和项目管理。
第十四条 国务院能源主管部门及其派出机构按照有关规定对光伏发电电量和上网电量计量情况实施监管。
光伏电站项目上网电量计量点原则上设置在产权分界点处,对项目上网电量进行计量。电网企业负责定期进行检测校表,装置配置和检测应满足国家和行业有关电量计量技术标准和规定。
电网企业对分布式光伏发电项目应安装两套计量装置,对全部发电量、上网电量分别计量。
第十五条 国务院能源主管部门及其派出机构对光伏发电电费结算情况实施监管。
光伏发电项目电费结算按照有关规定执行。以自然人为运营主体的,电网企业应尽量简化程序,提供便捷的结算服务。
第十六条 国务院能源主管部门及其派出机构对光伏发电补贴发放情况实施监管。
电网企业应按照国家核定的补贴标准,及时、足额转付补贴资金。
第三章 监管措施
第十七条 国务院能源主管部门派出机构与省级能源主管部门应当加强光伏发电项目管理和监管信息共享,形成有机协作、分工负责的工作机制。
第十八条 电网企业应向所在地区的国务院能源主管部门派出机构按季度报送以下信息:
1.光伏发电项目并网接入情况,包括接入电压等级、接入容量、并网接入时间等。
2.光伏发电项目并网交易情况,包括发电量、自用电量、上网电量、网购电量等。
3.光伏电站项目并网运行过程中遇到的重要问题等。
并网光伏电站运营主体应根据产业监测和质量监督等相关规定,定期将运行信息上报,并对发生的事故及重要问题及时向所在省(市)的国务院能源主管部门派出机构报告。
国务院能源主管部门及其派出机构根据履行监管职责的需要,可以要求光伏发电运营主体和电网企业报送与监管事项相关的其他文件、资料。
第十九条 国务院能源主管部门及其派出机构可采取下列措施进行现场检查:
1.进入并网光伏电站和电网企业进行检查;
2.询问光伏发电项目和调度机构工作人员,要求其对有关检查事项作出说明;
3.查阅、复制与检查事项有关的文件、资料,对可能被转移、隐匿、损毁的文件、资料予以封存;
4.对检查中发现的违法行为,有权当场予以纠正或者要求限期改正。
第二十条 光伏发电项目运营主体与电网企业就并网无法达成协议,影响电力交易正常进行的,国务院能源主管部门及其派出机构应当进行协调;经协调仍不能达成协议的,由国务院能源主管部门及其派出机构按照有关规定予以裁决。
电网企业和光伏发电项目运营主体因履行合同等发生争议,可以向国务院能源主管部门及其派出机构申请调解。
第二十一条 国务院能源主管部门及其派出机构可以向社会公开全国光伏发电运营情况、电力企业对国家有关可再生能源政策、规定的执行情况等。
第二十二条 电网企业和光伏发电项目运营主体违反本办法规定,国务院能源主管部门及其派出机构可依照《中华人民共和国可再生能源法》和《电力监管条例》等追究其相关责任。
电网企业未按照规定完成收购可再生能源电量,造成光伏发电项目运营主体经济损失的,应当按照《中华人民共和国可再生能源法》的规定承担赔偿责任。
第四章 附则
第二十三条 本办法由国家能源局负责解释,各派出机构可根据本地实际情况拟定监管实施细则。
第二十四条 本办法自发布之日起施行,有效期为3年。
根据《可再生能源中长期发展规划》,到2020年,中国力争使太阳能发电装机容量达到1.8GW(百万千瓦),到2050年将达到600GW(百万千瓦)。预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。预计2030年之前,中国太阳能装机容量的复合增长率将高达25%以上。
首先,在原材料价格下跌背景下,光伏电池和组件生产商持续亏损,组件商停产比例达到30%。但即便如此,光伏发电距离平价上网,还需时日,电站运营商也在观望电池和组件价格继续下降。
其次,补贴资金缺口很大。光伏电站是生存在补贴之上的行业,利润高低取决于补贴和各地电价水平。但可再生能源电力附加缺口大,统一的分布式发电项目电价标准还不确定,也会给电站投资商带来不确定性。如果分布式发电最终采取电量补贴方式,意味着只有电价较高的东部地区有利可图,而不是一个全面的市场繁荣。
第三,补贴和并网政策落实不易。明面上政府对光伏电站有很多补贴,但在具体实施中补贴拖欠严重,将耗费开发公司大量现金。并网也落实不易,国家电网对分布式光伏项目实行并网免费办理的政策,据民生证券新能源首席分析师王海生称,因为免费,没有纳入原有考核体系,地方公司执行的积极性并不高。
1. 屋顶结构是否遭受破坏
常见的屋顶结构分为混凝土屋顶和彩钢屋顶。项目开发前均由业主方提供或协助提供房屋建筑设计院的设计参数,在可控的承重范围内设计电站,并得到原有建筑设计院的认可。
公司对项目场址进行严格筛选,杜绝电站建成后房屋结构受损或者防水层受损,同时公司投资开发新型安装工艺,增强项目的安全性、可靠性。
2. 电力公司是否允许光伏电力并网
建设光伏电站前,首先需要获得省发改委的审批,然后根据省发改委的审批文件去当地所属电力公司办理并网手续。只有办理过并网手续的光伏项目才被允许并入电网。
国家金太阳示范工程鼓励光伏电站自发自用,电站系统需安装防逆流装置,防止电流倒送。
系统配置防逆流装置,检查交流电网供电回路三相电压、电流(测量点),判断功率流向和功率大小。如果电网供电回路出现逆功率现象,防逆流装置立即限制逆变器输出功率、或直接把光伏并网系统中的接入点断开(控制点)。
4. 电站是否需要市电切换装置
市电切换装置一般应用于离网光伏电站,离网光伏电站在蓄电池不能保证设备运行的情况下,通过切换装置将逆变器供电转为市电供电。
而并网光伏电站直接与电网并联,光伏电力与市电同时对设备供电,不需要切换装置。
众所周知,光照强度是一个抛物线的变化过程,光伏电力也遵循这一变化规律。用户功率稳定,市电补充光伏电力低于用户功率部分,保证用电稳定。
5. 电站的所发电力与并网接入点的市电是否一样
在电站系统中,逆变器是保证交流电输出稳定性的重要设备。项目采用的光伏并网逆变器均通过TUV、金太阳等权威认证和测试,逆变器将采集并网点电流数据输出与电网电压同频、同相的正弦交流电流,与市电具有相同的电力特性,保证系统稳定运行。
6. 投资建设光伏电站对于投资方与屋顶提供企业的经济效益
现阶段国家大力扶持光伏发电项目,对于符合条件的项目,国家给予一定比例的资金支持,包括金太阳示范工程、光电建筑一体化等。 项目一般采用合同能源管理模式,分享节能收益。
投资方的收益:通过获得国家补贴,建设光伏电站的投资回收期由之前的15至20年缩短为现阶段的7至12年。
企业方的收益:对建设光伏电站在资金方面零投入,只需提供闲置屋顶,以当地市电价格使用光伏电力。同时,投资方给予企业6~10%的电价返还,实现节能效益共享的初衷。
7. 电流计量
在电能计量表安装在逆变器交流输出端的交流配电柜中,项目均采用供电部门提供的计量表,符合相关国家计量标准,达到精准、公平、合理的电流计量。
8. 建成后电站的运营维护
UPSOLAR组建项目管理公司,定期巡检电站,保证电站运行,同时检查电站是否对房屋造成损坏,对于确定为电站原因引起的,UPSOLAR承担修复费用。同时,UPSOLAR拥有自己的光伏实验室,能精确的检测电站的运行状况。
太阳能有众多的优势,光伏发电技术可以用于任何需要电源的场合,从航天器到家用电器; 功率范围极大,从兆瓦级电站到玩具电源、 光伏发电系统有离网的,有并网的; 并网的系统有分布式的,有集中式大型光伏电,我国光伏发电分布式和集中式两种系统都要发展,但是,我们认为要想实现太阳能发电的大规模应用,还是应当以建设光伏发电站为主。 然而,太阳能也存在着两个重大的局限性: 1) 分散性: 到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低,想要得到较大的光伏发电能量,需要面积相当大的一套收集和转换设备; 2) 不稳定性: 由于受到昼夜变更等自然条件的限制以及晴阴云雨等随机因素的影响,到达地面的太阳辐射是间断的不稳定的& 不稳定性意味着储能成为太阳能利用的重要环节,然而这恰是当前太阳能利用中的薄弱环节,特别是与大型集中式光伏电站相匹配的而且成本可以接受的储能技术更是未能很好解决的问题& 不带储能装置的光伏发电系统直接并网将给电网带来潮汐式送电,造成电压起伏不定,如果这样并网的发电量比例较大,可能导致电网失稳; 如果配置大容量的化学蓄电设备,不仅将会增加成本,而且存在安全隐患和后期处理蓄电设备的环境风险& 在光伏发电项目建设实践中,普遍遇到电网接入限制而产生的弃光问题,以及由于用地指标紧张而出现的无处建光伏电站问题,这里面固然有体制和政策方面的障碍,也与上述太阳能两个内在的局限性密切相关。大规模建设集中式光伏发电站必须解决上述两个问题,而如何解决问题需要创新思路,下面主要就此提出具体建议。
通过与水结合建设光伏发电站解决用地困难问题光伏电站用地为永久性地,大型地面光伏电站需占用较大的土地面积,理论估算光伏电站平均每千瓦占地 1% 平方米。 我省地处长江中下游地区,经济发达,人多地少,最近几十年的快速发展,特别是工业化的加速城市扩大和交通建设等,使用地需求大增,用地指标一直紧张& 中央#十三五%规划建议中明确要求,坚持节约资源和保护环境的基本国策,坚持最严格的耕地保护制度,开展大规模国土绿化行动,加快建设资源节约型!环境友好型社会,推进美丽中国建设,在此情况下,未来征用耕地和林地条件会更加严格,再加上光伏发电站本身对用地要求满足一定的条件,将使用地困难问题更难解决。如何解脱建设光伏电站用地难的困境? 需要转变观念,拓宽思路,我们提出采取与水结合方式建设光伏发电站。 长江中下游地区自然环境是江河纵横交错,湖泊星罗棋布,而且还有多年来的水利兴修留下的很多水库渠道,这些提供了发展光伏发电的广阔空间& 第一种方式是利用江河湖库的岸边未利用土地,水中沙洲滩涂!浅水湖塘池沼,以及为了加强生态保护而开展退耕还湿!退养还滩的湿地资源来建设光伏电站,这些年来建成的#渔光互补模式光伏电站基本上属于这一种类型。 第二种方式是利用水位较深的湖泊和水库的水面建设光伏电站,当然,还有以上两种方式的复合方式。 国外已经有了水面光伏电站的实例,与浅水中固定支架的渔光互补电站不同,水面光伏电站的平台是浮在水面上的。
通过光水互补解决光伏发电不稳定性和并网困难问题
依托水电站直接光水互补方式
光伏发电具有出力不稳定和间歇性的特点,长距离输送中电力潮流变化将会给电网的电压控制增加难度,为此电力系统需要有足够备用容量来调节,通常采用相应的火电机组承担旋转备用,但是这样处理会消耗煤炭!油气等化石能源,造成污染物及温室气体的排放。 为解决光伏发电存在的问题,在青海研发了水光互补、协调运行控制系统,依托水电站发展光伏发电站,两种电站互相补充发电,在光伏电站能够充分发电时直接并网,水电站停止发电或减少发电量; 在光伏电站发电能力下降或停止发电时,水电站启动发电或增加发电能力,以补足发电量,两种电站交替运行互补并网以保持并网电量均衡,电网电压稳定。 这种方式利用水轮发电机组的快速调节能力和水库的调节能力,提高了光伏电站的电能质量,依靠水力发电和光伏发电快速补偿的功能,使光伏发电转换为安全稳定的优质电源并能够安全并网。与利用火电机组承担旋转备用的方式相比,!水光互补%是清洁能源之间的优势互补,不仅效率更高,而且减少化石燃料消费,降低了碳排放,因而,应用前景广阔,具有较高社会经济效益& 安徽省有相当多的已经建成的水电站,有的地区水力发电的潜力已经不多,如果用来发展水光互补的光伏电站,可以迅速而低成本地扩大发电能力。
与抽水蓄能相结合解决光伏电站大容量蓄能问题
理论上通过储能装置可以使光伏发电保持平稳的电能输出,但是,大容量的蓄能装置,特别是电站级的化学蓄能装置恰是薄弱环节。 众所周知,抽水蓄能是电力系统最可靠、最经济!寿命周期最长!容量最大的储能装置,我们建议将光伏发电技术与抽水蓄能技术组合起来,利用抽水蓄能技术来解决光伏发电的不稳定性问题。这种组合电站的运行方式如下: 光伏发电 、抽水蓄能、 放水发电 、 电能并网。 这种光伏发电和水力发电组合中,光伏发电带有起伏性!间歇性,甚至有随机性,但是,通过抽水蓄能,光伏发电得到的电能将以大量水体的势能储存起来; 水力发电则是连续的稳定的全天候的,庞大的水库水体平抑了太阳能的起伏,保持了输出的电力是平稳的、连续的,同时通过水力发电又将不稳定的光伏直流电,变换成平稳的交流电,提高了并网电能的品质。这就是说,这条技术路线同时解决了蓄能设施和直流变交流的逆变器问题,以及相应的调控问题。光伏发电和抽水蓄能都是相当成熟的技术,这里的组合方式是前后相继,没有交叉重组,同时由于相关的工程建设与管理也比较成熟,这就极大地缩短研发周期,降低前期投入,需要做的事是解决现行体制中的某些障碍。对于已经建成的抽水蓄能电站,适当调整分配抽水蓄能电站的抽水和发电能力,或另外增加一些抽水能力,就可以在保持抽水蓄能电站原有功能同时,支持建设光伏发电站& 对于新建设的抽水蓄能电站,将光伏电站与抽水蓄能电站统一规划!设计!建设和运行!管理,将更为有利。