共线性

更新时间:2022-09-23 09:50

共线性,即同线性或同线型。统计学中,共线性即多重共线性

产生原因

主要有3个方面:

(1)经济变量相关的共同趋势。

(2)滞后变量的引入。

(3)样本资料的限制。

影响

(1)完全共线性下参数估计量不存在。

(2)近似共线性下OLS估计量非有效。

多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。总之就是找容易记忆的方法。

(3)参数估计量经济含义不合理。

(4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外。

(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。

需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。

判断共线性的方法

如上表,是对德国人口老龄化情况的分析,其中y是老龄化情况,线性回归的x1、x2、x3分别为人均国内生产总值、出生率、每个医生平均负担人口数。

判断方法1:特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。

判断方法2:条件索引列第3第4的值大于10,可以说明存在比较严重的共线性。

判断方法3:比例方差内存在接近1的数(0.99),可以说明存在较严重的共线性。

解决方法

(1)排除引起共线性的变量。

找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。

(2)差分法。

时间序列数据、线性模型:将原模型变换为差分模型。

(3)减小参数估计量的方差:岭回归法(Ridge Regression)。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}