共轭先验分布

更新时间:2022-08-25 15:35

贝叶斯统计中,如果后验分布先验分布属于同类,则先验分布与后验分布被称为共轭分布,而先验分布被称为似然函数的共轭先验。

共轭先验

在贝叶斯统计中,如果后验分布先验分布属于同类,则先验分布与后验分布被称为共轭分布,而先验分布被称为似然函数的共轭先验。比如,高斯分布贝叶斯决策理论的工作中提出。类似的概念也曾由乔治·阿尔弗雷德·巴纳德独立提出。

具体地说,就是给定贝叶斯公式假定似然函数是已知的,问题就是选取什么样的先验分布会让后验分布与先验分布具有相同的数学形式。

共轭先验的好处主要在于代数上的方便性,可以直接给出后验分布的封闭形式,否则的话只能数值计算。共轭先验也有助于获得关于似然函数如何更新先验分布的直观印象。

所有指数家族的分布都有共轭先验。

先验概率

贝叶斯统计中,某一不确定量p的先验概率

在使用贝叶斯定理时,我们通过将先验概率与似然函数相乘,随后标准化,来得到后验概率分布,也就是给出某数据,该不确定量的条件分布。

先验概率通常是主观的猜测,为了使计算后验概率方便,有时候会选择共轭先验。如果后验概率和先验概率是同一族的,则认为它们是共轭分布,这个先验概率就是对应于似然函数的共轭先验。

后验概率

在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率

假设一个学校里有60%男生和40%女生。女生穿裤子的人数和穿裙子的人数相等,所有男生穿裤子。一个人在远处随机看到了一个穿裤子的学生。那么这个学生是女生的概率是多少?

使用贝叶斯定理,事件A是看到女生,事件B是看到一个穿裤子的学生。我们所要计算的是P(A|B)。

P(A)是忽略其它因素,看到女生的概率,在这里是40%

P(A')是忽略其它因素,看到不是女生(即看到男生)的概率,在这里是60%

P(B|A)是女生穿裤子的概率,在这里是50%

P(B|A')是男生穿裤子的概率,在这里是100%

P(B)是忽略其它因素,学生穿裤子的概率,P(B) = P(B|A)P(A) + P(B|A')P(A'),在这里是0.5×0.4 + 1×0.6 = 0.8.

根据贝叶斯定理,我们计算出后验概率P(A|B):

可见,后验概率实际上就是条件概率。

高斯分布

正态分布(德语:Normalverteilung;英语:normal distribution)又名高斯分布(德语:Gauß-Verteilung;英语:Gaussian distribution, 以德国数学家卡尔·弗里德里希·高斯的姓冠名),是一个在数学物理工程领域都非常重要的概率分布,由于这个分布函数具有很多非常漂亮的性质,使得其在诸多涉及统计科学离散科学等领域的许多方面都有着重大的影响力。比如图像处理中最常用的滤波器类型为Gaussian滤波器(也就是所谓的正态分布函数)。

随机变量服从一个位置参数为、尺度参数为的概率分布,记为:

则其概率密度函数

正态分布的数学期望值或期望值等于位置参数,决定了分布的位置;其方差的开平方或标准差等于尺度参数,决定了分布的幅度。

正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线(类似于寺庙里的大钟,因此得名)。我们通常所说的标准正态分布是位置参数,尺度参数的正态分布。

参见

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}