内存传输标准

更新时间:2024-08-30 19:54

内存传输标准是指主板所支持的内存传输带宽大小或主板所支持的内存的工作频率,这里的内存最高传输标准是指主板的芯片组默认可以支持最高的传输标准。不同主板的内存传输标准是不同的,原则上主板可以支持的内存传输标准是由芯片组决定的。 当然,主板厂商在设计主板时也可以做一定的发挥,可以支持比芯片组默认更高或者更低的内存传输标准,前提是内存类型不能改变,对于要支持AMD64位“Bulldozer(推土机)”架构CPU的芯片组来说,CPU也必须集成DDR3 1600内存控制器才能运行,所以支持内存的传输标准会视CPU而定。

基本介绍

主板和内存的关系

不同类型的内存其传输标准是不相同的。主板支持内存传输标准决定着,主板所能采用最高性能的内存规格,是选择购买主板的关键之一。

在选购好CPU和主板之后选购内存时,必须注意该主板所支持的内存类型和内存传输标准,以及是否支持双通道等等。要选购符合该主板要求的内存才能获得最佳的性能。

内存传输率和内存大小没有必然的关系,不过因为速度快和容量大的内存都是科技进步带来的产品,所以一般容量较大的传输率也较大,绝大多数2G的内存都为DDR2系列,有533、667、800、1066、1333等频率。

越老的主板支持的传输率就越低,大部分现在的主板都能支持到800。某些质量好的主板可以支持到1066和1333,有些主板在超频的状态下也会支持这么高的频率。

主板支持的内存传输率是一个重要的指标,在主板的技术参数上肯定会标注。只要知道主板的具体型号就能查到所支持的传输率。.

支持内存传输标准

主板所能支持内存的最大容量是指最大能在该主板上插入多大容量的内存条,超过容量的内存条即便插在主板上, 主板也无不支持。主板支持的最大内存容量理论上由芯片组所决定,北桥决定了整个芯片所能支持的最大内存容量。但在实际应用中,主板支持的最大内存容量还受到主板上内存插槽数量的限制,主板制造商出于设计、成本上的需要,可能会在主板上采用较少的内存插槽,此时即便芯片组支持很大的内存容量,但主板上并没有足够的内存插槽供适用,就没法达到理论最大值。

传输标准

RDRAM内存传输标准

RDRAM有PC600,PC800,PC1066和PC1600等,其工作频率分别为300MHz,400MHz,533MHz和800MHz,其对应的内存传输带宽分别为1.2GB/sec,1.6G B/sec,2.12GB/sec和2.4GB/sec,并可组成双通道或四通道获得惊人的内存带宽。使用RDRAM时必须将内存插槽全部插满,如果内存条数量不够,必须使用专用的连接器插满内存插槽。

在选购好CPU和主板之后选购内存时,必须注意该主板所支持的内存类型和内存传输标准,以及是否支持双通道等等。要选购符合该主板要求的内存才能获得最佳的性能。

RDRAM(Rambus DRAM)是美国的RAMBUS公司开发的一种内存。与DDR和SDRAM不同,它采用了串行的数据传输模式。在推出时,因为其彻底改变了内存的传输模式,无法保证与原有的制造工艺相兼容,而且内存厂商要生产RDRAM还必须要加纳一定专利费用,再加上其本身制造成本,就导致了RDRAM从一问世就高昂的价格让普通用户无法接收。而同时期的DDR则能以较低的价格,不错的性能,逐渐成为主流,虽然RDRAM曾受到英特尔公司的大力支持,但始终没有成为主流。

RDRAM的数据存储位宽是16位,远低于DDR和SDRAM的64位。但在频率方面则远远高于二者,可以达到400MHz乃至更高。同样也是在一个时钟周期内传输两次次数据,能够在时钟的上升期和下降期各传输一次数据,内存带宽能达到1.6Gbyte/s。

普通的DRAM行缓冲器的信息在写回存储器后便不再保留,而RDRAM则具有继续保持这一信息的特性,于是在进行存储器访问时,如行缓冲器中已经有目标数据,则可利用,因而实现了高速访问。另外其可把数据集中起来以分组的形式传送,所以只要最初用24个时钟,以后便可每1时钟读出1个字节。

一次访问所能读出的数据长度可以达到256字节。

PC600

RDRAM仍旧采用习惯的内存频率来命名。PC600的工作频率为300 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为600 MHz,所以命名为PC600。

PC800

PC800的工作频率为400 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为800 MHz,所以命名为PC800。

PC1066

PC1066的工作频率为533 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为1066 MHz,所以命名为PC1066。

SDRAM内存传输标准

标准的SDRAM分为66MHz SDRAM(即俗称的PC66,但PC66并非正规术语),PC100以及PC133,其标准工作频率分别为66MHz,100MHz和133MHz,对应的内存传 输带宽分别为533MB/sec,800MB/sec和1.06GB/sec。非标准的还有PC150等。需要注意的是,对所有的内存而言,内存的标准工作频率只是指其在此频率下能稳定工作,而并非只能工作在该频率下。

高标准的SDRAM可以工作在较低的频率下,例如PC133也可以工作在100MHz,只是此时内存性能不能得到完全发挥,性能大打折扣;而低标准的内存通过超频也可以工作在较高频率上以获得较高的内存性能,只是稳定性和可靠性要大打折扣。

DDR SDRAM内存传输标准

标准的DDR SDRAM分为DDR200,DDR266,DDR333以及DDR400,其标准工作频率分别100MHz,133MHz,166MHz和200MHz,对应的内存传输带宽分别为1. 6GB/sec,2.12GB/sec,2.66GB/sec和3.2GB/sec,非标准的还有DDR 433,DDR 500等等。

初学者常被DDR 266,PC2100等字眼搞混淆,DDR 266与PC 2100其实就是一回事,只是表述方法不同罢了。DDR266是指的该内存的工作频率(实际工作频率为133MHz,等效于266MHz 的SDRAM),而PC2100则是指其内存传输带宽(2100MB/sec)。同理,PC1600就是DDR 200,PC2700就是DDR333,PC3200就是DDR400。

DDR2内存传输标准

DDR2可以看作是DDR技术标准的一种升级和扩展:DDR的核心频率时钟频率相等,但数据频率为时钟频率的两倍,也就是说在一个时钟周期内必须传输两次数据。而DDR2采用“4 bit Prefetch(4位预取)”机制,核心频率仅为时钟频率的一半、时钟频 率再为数据频率的一半,这样即使核心频率还在200MHz,DDR2内存的数据频率也能达到800MHz—也就是所谓的DDR2 800。

已有的标准DDR2内存分为DDR2 400和DDR2 533,今后还会有DDR2 667和DDR2 800,其核心频率分别为100MHz、133MHz、166MHz和200MHz,其总线频率(时钟频率)分别为200MHz、266MHz、333MHz和400MHz,等效的数据传输频率分别为400MHz、533MHz、667MHz和800MHz,其对应的内存传输带宽分别为3.2GB/sec、4.3GB/sec、5.3GB/sec和6.4GB/sec,按照其内存传输带宽分别标注为PC23200、PC24300、PC25300和PC26400。

两种标准区别

内存传输标准-DDR2与DDR的区别

延迟问题

从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。

这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。

封装和发热量

DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。

DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。

DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。

DDR2采用的新技术

除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。

OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。

ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。

总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。

DDR3

对于一些初级DIY爱好者来说,更高性能的代表就是更高的频率,这样的表述在一定意义上也是正确的,不过这样的标准显然并不适合用来表述DDR3内存。提到DDR3内存我们就不得不提这个标准的制定者JEDEC,这个协会组织囊括了目前最主要的上游芯片厂商和制造厂商,对内存的性能和标准制定起着决定性的作用。而在DDR3内存的标准制定之初,它就被定义为降低至少30%的功耗,以及至少15%的性能提升,下边我们就来看看DDR3内存是如何实现这样的性能的。

DDR3内存有几个区别于DDR2内存的特性:  1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。

2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。

3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。

DDR3与DDR2几个主要的不同之处: 突发长度(Burst Length,BL)

由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。

寻址时序(Timing)

就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。

DDR3新增的重置(Reset)功能

重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有操作,并切换至最少量活动状态,以节约电力。

在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

DDR3新增ZQ校准功能

ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

参考电压分成两个

在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。

点对点连接(Point-to-Point,P2P)

这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个关键区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to-two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}