冉启文

更新时间:2023-10-23 19:10

冉启文,哈尔滨工业大学理学院教授/博士生导师。中国数学会会员,美国数学会会员,IEEE会员,ACM会员。

人物经历

冉启文于1983年毕业于西南师范大学(西南大学前身之一)数学系,并被分配到重庆大学任教。1985年考入哈尔滨工业大学数学系攻读硕士学位,次年再次考入中国科学院应用数学研究所应用概率统计专业攻读硕士学位。1988年取得理学硕士学位并进入哈尔滨工业大学任教。1995年晋升副教授,次年获得应用数学专业硕士研究生导师资格,同年,考入哈尔滨工业大学计算机系计算机应用专业攻读博士学位。1999年获得博士学位后于次年进入哈尔滨工业大学电子科学与技术博士后流动站进行博士后研究工作。在此期间参与香港理工大学计算机系的联合课题“分数傅立叶变换理论及应用”的研究。2002年博士后流动站出站,回到哈尔滨工业大学

数学系任教,次年获得香港特别行政区政府资助再次与香港理工大学计算机系进行联合课题研究,同年晋职哈尔滨工业大学教授,2004年获得哈尔滨工业大学电子科学与技术一级学科物理电子学二级学科的博士生导师资格。

研究方向

卫星激光通信、信息光学、信息与通信理论、应用数学。二十多年来,主要的学术研究兴趣是小波理论和分数傅立叶变换理论及其在光学、通信、图像处理和信号处理等领域的应用,主持和参与完成十五项国家自然科学基金课题、省部和校级基金课题、863国家高技术研究课题、973国家重大基础研究课题,获得航天部科技进步奖一项,黑龙江省教学成果奖两项,出版学术专著四部、教材一本,在国内外学术期刊正式发表学术研究论文四十余篇。

主要作品

学术专著

(部分)

[1] 冉启文, 谭立英. 《分数傅立叶光学导论》. 科学出版社,2004年

[2] 冉启文, 谭立英. 《小波分析与分数傅立叶变换及应用》. 国防工业出版社,2003年

[3] 冉启文. 《小波变换与分数傅立叶变换理论及应用》. 哈尔滨工业大学出版社,2003年

[4] 冉启文. 《小波理论及应用》. 哈尔滨工业大学出版社,1995年

学术论文

(部分)

[1] Qiwen RAN, Daniel S. YEUNG, Eric C. C. TSANG and Qi WANG, General Multifractional Fourier Transform method based on the Generalized Permutation Matrix group, IEEE Transactions on signal processing, Vol. 53, No. 1, January 2005, pp. 83-98(IF:2.335)

[2] Qiwen RAN, Haiying Zhang, Jin Zhang, Liying Tan and Jing Ma, deficiencies of the encryptography based on multi-parameters fractional Fourier transform, Optics Letters, 34(11), 1729-1731(2009)(IF:3.772)

[3] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Generalized Prolate Spheroidal Wave Functions Associated with Linear Canonical Transform. IEEE Transaction on Signal Processing, Vol.58, No.6, pp.3032-3041, 2010(IF:2.335)

[4] Zhu B H, Liu S T and RAN Q W. optical image encryption based on multifractional Fourier transforms. Optics letters 2000,25(16) 1159-1161(IF:3.772)

[5] RAN qi-wen, Yuan lin, Tan li-ying, Ma jing and Wang qi, High order generalized permutational fractional Fourier transforms. Chinese Physics. 2004, 13(2): 178-186(IF:1.680)

[6] Yeung Daniel S, RAN Qiwen, Tsang Eric C C and Teo Kok Lay. Complete way to fractionalize Fourier transform. Optics Communications. 2004, 230: 55-57(IF:1.552)

[7] Hui Zhao, Qiwen RAN, Jing Ma and Liying Tan, On bandlimited signals associated with linear canonical transform, IEEE signal processing Letters, Vol. 16, No. 5, pp.343-345, May 2009(IF:1.203)

[8] Hui Zhao, Qiwen RAN, Liying Tan and Jing Ma. Reconstruction of bandlimited signals in linear canonical transform domain from finite nonuniformlu spaced samples, IEEE Signal Processing Letters, 16(12): 1047-1050, 2009(IF:1.203)

[9] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan, A convolution and product theorem for the linear canonical transform, IEEE signal processing letters, Vol.16, No.10, 853-856, October 2009(IF:1.203)

[10] Deyun Wei, Qiwen RAN, Yuanmin Li. Generalized Sampling Expansion for Bandlimited signals Associated with the Fractional Fourier Transform. IEEE Signal Processing Letters, 17(6),pp. 595-598, 2010(IF:1.203)

[11] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan. Reply to “Comment on ‘A convolution and product theorem for the linear canonical transform’ ”. IEEE Signal Processing Letters, 17(6), pp. 617-618, 2010(IF:1.203)

[12] Qiwen RAN, Hui Zhao, Liying Tan and Jing Ma. Sampling of Bandlimited Signals in Fractional Fourier Transform Domain. Circuits, Systems, and Signal Processing, 29(3):459-467,2010

[13] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Linear canonical ambiguity function and linear canonical transform moments. Optik, In press, 2010

[14] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling Theorem Associated with Multiple-Parameter Fractional Fourier Transform. Journal of Computers, 5(5):695-702, 2010

[15] RAN qi-wen, Wang qi, Ma jing and Tan li-ying. Multifractional Fourier Transform method and its Applications to Image Encryption. Chinese Journal of Electronics, 2003,12(1): 29-34(IF:0.148)

[16] RAN Q W, Feng Y J, Wang J Z and Wu Q T. The Discrete Fractional Fourier Transform and Its Simulation. Chinese Journal of Electronics 2000, 9(1) p. 70-75(IF:0.148)

[17] Zhang, Haiying, RAN, Qiwen, Zhang, Jin. Optical image encryption and multiple parameter weighted fractional fourier transform. Guangxue Xuebao/Acta Optica Sinica 28(2): 117-120, December 2008

[18] Qiwen RAN, Zhongzhao Zhang, Deyun Wei and Shaxue Jun. “Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix,” Electrical and Computer Engineering, 2009. CCECE '09. Canadian Conference on 3-6, Page(s):555–558, May 2009

[19] RAN, Qi-Wen, Zhang, Hai-Ying, Zhang, Zhong-Zhao, Sha, Xue-Jun. The analysis of the discrete fractional Fourier transform algorithms, 2009 Canadian Conference on Electrical and Computer Engineering, CCECE '09, 979-982, 2009

[20] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling analysis in weighted fractional Fourier transform domain, Computational Sciences and Optimization, 2009. International Joint Conference on, 1: 878-881, Apr. 2009

获奖记录

(部分)

[1] 1995年获得航天工业总公司科技进步三等奖1项

[2] 2008年获国防科工委科技进步二等奖1项

[3] 2009年获国家技术发明奖二等奖1项

[4] 获得授权国家发明专利2项

[5] 获得授权国防发明专利2项

工科数学现代教学技术研究与开发

教学成果奖 黑龙江省教学成果奖

2000.5 二等奖

教学成果奖 哈工大教学成果奖

2003.5 二等奖

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}