化学汽相淀积工艺

更新时间:2023-10-09 23:57

用气态反应原料在固态基体表面反应并淀积成固体薄层或薄膜的工艺过程,类似于汽相外延工艺。60年代,随着集成电路平面技术的发展,化学汽相淀积工艺受到重视而得到迅速发展。当时主要是常压下的化学汽相淀积,称为常压化学汽相淀积工艺。

工艺简介

用气态反应原料在固态基体表面反应并淀积成固体薄层或薄膜的工艺过程,类似于汽相外延工艺(见外延生长)。60年代,随着集成电路平面技术的发展,化学汽相淀积工艺受到重视而得到迅速发展。当时主要是常压下的化学汽相淀积,称为常压化学汽相淀积工艺。70年代后期,低压化学汽相淀积工艺取得显著进展,在集成电路制造工艺中发挥了更大的作用。在应用低压化学汽相工艺的同时,等离子化学汽相淀积工艺和金属有机化学汽相淀积工艺也得到迅速发展。

化学汽相淀积工艺常用于制造导电薄膜(如多晶硅、非晶硅)或绝缘薄膜(如氧化硅、氮化硅和磷硅玻璃等)。这些薄膜经过光刻和腐蚀,可形成各种电路图案,与其他工艺相配合即可构成集成电路。常见的淀积薄膜的化学反应式如下:

SiH4─→Si(多晶硅或非晶硅)+2H2

SiH4+4N2O─→SiO2+2H2O+4N2

SiH4+2O2─→SiO2+2H2O

3SiH4+4NH3─→Si3N4+12H2

3SiH2Cl2+10NH3─→Si3N4+6NH4Cl+6H2

SiH4+2xPH3+2(2x+1)O2─→

SiO2·xP2O5(磷硅玻璃)+(3x+2)H2O

化学汽相淀积工艺还可用于其他方面,如制造超导薄膜材料铌锗合金(Nb3Ge)、光学掩模材料氧化铁、光纤芯材锗硅玻璃(SiO2·xGeO2),以及装饰性薄膜氮化钛等。

3NbCl4+GeCl4+8H2─→Nb3Ge+16HCl

4Fe(CO)5+3O2─→2Fe2O3+20CO

与物理汽相淀积薄膜工艺(如蒸发、溅射、离子镀等)相比,化学汽相淀积具有设备简单和成本低的优点,化学汽相淀积工艺,也可用于制造体材料,例如,高纯三氯硅烷用氢还原,在加热的硅棒上不断淀积出硅,使硅棒变粗,形成棒状高纯硅锭,成为制备半导体硅单晶的原料。

常压化学汽相淀积 图1a是高频感应加热的常压化学汽相淀积装置,感应受热基座通常用石墨制成,在基座上放置片状的衬底。例如,以单晶硅片为衬底,在硅片上淀积氧化硅、氮化硅、多晶硅或磷硅玻璃等薄膜。图1b是电阻平台加热的多喷头常压化学汽相淀积装置,用硅烷、磷烷或氧为原料,以氮气释稀,在400℃左右淀积氧化硅或磷硅玻璃。连续传送装置可以提高产量并改善均匀性。

低压化学汽相淀积 图2是低压化学汽相淀积装置原理,采用管式电阻炉加热,在炉内以直立式密集装片。片的平面垂直于气流方向。由于在低压(约50帕)下工作,气体分子的平均自由程比常压下增加1000多倍以上,扩散过程加快,片与片之间的距离约几毫米。因此,每一个装片架上可以放100~200个片子,产量比常压法增加十多倍。这种工艺在半导体器件制造过程中,可淀积多种薄膜,应用很广。

等离子化学汽相淀积 利用高频电场使低压下的气体产生辉光放电,形成非平衡等离子体,其中能量较高的电子撞击反应气体分子,促使反应在较低温度下进行,淀积成薄膜(图3)。这种工艺主要用于制备集成电路或其他半导体芯片表面钝化保护层,以提高器件可靠性和稳定性。

 参考书目

Donald T.Hawkins ed.,Chemical Vapor Deposition1960~1980, IFI/Plenum Data Co.,New York,1981.

相关知识

化学气相淀积

CVD (Chemical Vapor Deposition)  指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。

化学气相淀积特点:淀积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。

化学气相淀积是把含有构成薄膜元素的气态反应剂引入反应室,在晶圆表面发生化学反应,从而生成所需的固态薄膜并淀积在其表面。

目前,在芯片制造过程中,大部分所需的薄膜材料,不论是导体、半导体,或是介电材料,都可以用化学气相淀积来制备,如二氧化硅膜、氮化硅膜、多晶硅膜等。它具有淀积温度低,薄膜成分和厚度易控,薄膜厚度与淀积时间成正比,均匀性与重复性好,台阶覆盖好,操作方便等优点。其中淀积温度低和台阶覆盖好对超大规模集成电路的制造十分有利。因此是目前集成电路生产过程中最重要的薄膜淀积方法。目前常用的有常压化学气相淀积、低压化学气相淀积以及等离子体增强化学气相淀积等。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}