去离子化

更新时间:2022-08-26 10:34

去离子化是将带正电的离子和带负电的离子(阳离子阴离子)从水中移除的过程。

技术介绍

人口不断增长使得人类对水的需求与日俱增,而对于那些位于干旱地区的城市来说,这种需求尤为迫切。众所周知,海洋、湖泊和河流中的天然水含有各种病原微生物和有毒有机物、固体悬浮物、重金属和许多无机盐类。即使从自来水厂出厂的自来水,由于管道污染,当为用户使用时也受到不同程度的污染。为了净化这些水体,必须进行杀菌消毒、过滤固体悬浮物和脱盐处理。

常见的水处理技术包括:

1.去除固态微粒:膜过滤吸附等;

2.去除有机物:吸附紫外线杀菌光催化等;

3.脱盐(去除阴阳离子):闪蒸、交换树脂逆渗透电渗析纳滤等。

目前去除固体悬浮物和杀菌消毒已经有十分成熟的技术,但是广泛使用的脱盐技术还有很大的缺点。例如闪蒸能耗很大;离子交换和反渗析技术都需要很昂贵的再生工艺,而且在再生过程中会带来二次污染;电渗析(EDI)系统虽然得到商业化,但是比较费电,因为使用的电压非常高,同时还由于电解水的原因,产生出很多的气体。社会进步和能源不足使得人们在评价脱盐技术时越来越考虑成本和效率的因素。为此,非常需要开发一种节能环保的净化水技术。

去离子化技术就是出现在传统的脱盐领域,他被认为是一种低成本、高效率和无污染的很有潜力的脱盐技术,将会在净化水领域带来一次革新。

技术分类

电容去离子

电容去离子(capacitive deionization,CDI)的基本思想是通过施加静电场强制离子向带有相反电荷的电极处移动。由于碳材料,如活性碳和碳气凝胶等制成的电极,不仅导电性能良好,而且具有很大的比表面积。若将两片活性碳材料分别作为电容器阴阳两级并在两电极之间施加一定的直流电压便会形成一个静电场。置于静电场中碳电极会在其与电解质溶液界面处产生很强的双电层。双电层能吸附并储存大量的电解质离子,并储存一定的能量。一旦除去电场,吸引的离子被释放到本体溶液中,溶液中的浓度升高。这一过程也称为“充电富集”。此种原理也被大量应用在超级电容器和电容盐度梯度发电(capacitive blue energy)中。

和传统的水溶液去离子方法相比,电容去离子具有几方面重要的优势。例如,离子交换是目前工业上从水溶液中去除阴阳离子,包括重金属和放射性同位素的主要手段,但这一过程产生大量的腐蚀性二次废水,必须经过再生装置处理。而电容去离子与离子交换不同,系统的再生不需要使用任何酸、碱和盐溶液,只是通过电极的放电完成,因此不会有额外的废物产生,也就没有污染;同蒸发这种热过程相比,电容去离子具有很高的能量利用率;和电渗析和反渗透相比,该方法还具有操作简便的优势。另外,从地下水中选择性去除Cr的初步实验表明,对水中某些微量杂质的选择性处理也是有可能实现的。

因为具有能量利用率高,污染小,易操作等优点,电容去离子可以应用在很多方面,包括家庭和工业用水软化、废水净化、海水脱盐、水溶性的放射性废物处理、核能电厂废水处理、半导体加工中高纯水的制备和农业灌溉用水的除盐等。为了尽可能的提高电容去离子化的除盐效率,我们还可以在碳电极表面附着上一层离子交换膜,也就是在阳极上加阴离子选择性渗透膜,在阴极上加阳离子选择性渗透膜,离子交换膜可以阻挡与之同性离子进入碳电极,由此改良双电层内的被吸附离子分布结构,从而吸附更多的离子,如图1所示。

电去离子

电去离子(EDI)的基本工作模型如图2所示,膜堆由交替排列的阴、阳离子交换膜和浓淡室隔板等组件构成,离子交换树脂填充在阴、阳离子交换膜之间,膜堆两侧设置正负电极。进入淡水室中的电解质离子首先通过交换作用吸附到树脂颗粒上,而后在外加直流电场作用下,沿树脂颗粒构成的导电传递路径迁移到淡水室的离子交换膜表面,并透过膜进入浓水室而被除去。一般而言,EDI的去离子过程根据原水含盐量的不同有2种工况:原水含盐量较高时,淡水室中的树脂保持盐型,水解离程度微弱,去离子作用主要来源于树脂的增强导电能力;当原水含盐量降低时,淡水侧的阴、阳离子交换膜表面以及接近出水口的树脂床层中发生水分子的解离,水解离产物H+与OH-对树脂床层的就地”电再生”使部分混树脂保持H+和OH-型,从而实现连续深度除盐。

EDI技术不仅能去除水中的Na+、Ca2+、Mg2+、Cl-、SO2-4等强电解质离子,而且对CO2、氨、硅、硼等弱电解质也有很好的去除效果,这是传统的电渗析离子交换技术所不具备的技术优势。其去除机理在于:一定条件下EDI过程中的水解离作用产生的OH-和H+与弱电解质结合生成强电解质离子,使之在电场作用下发生迁移,最终达到去除目的。

此外,EDI对细菌等微生物也有一定抑制效应。在EDI膜堆内部的淡水室中,剧烈的水解离导致局部中性紊乱,形成不利于细菌生长的环境条件;同时,细菌尤其是对制药用水影响较大的革兰氏阴性菌带负电荷,极易被吸附到树脂表面,处于水解离最活跃的部位,从而使其生长受到抑制甚至被杀灭,大大减轻EDI产水受细菌内毒素污染的程度。

应用

纯水制备

传统纯水制备技术主要依靠蒸馏离子交换。其中,蒸馏过程不仅能耗高,且产水水质低,目前已很少单独使用;采用离子交换法树脂必须频繁用酸碱进行再生,使得纯水制备无法连续操作,且再生过程不仅消耗大量清洗用水,还产生大量酸碱废液,对环境造成很大危害。20世纪60年代以后,膜技术在世界范围内逐渐兴起。其共同特点是在一定条件下利用膜来实现杂质与水的分离。与传统的水处理方法相比,膜分离技术具有高效、节能、易操作等优点。目前,以微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、电去离子(EDI)等为代表的膜技术的应用对纯水的制备有着不可替代的作用,而以RO/EDI为核心的全膜法纯水工艺逐渐成为高纯水生产技术的主流。

废水处理

重金属废水来源广泛,对环境和人体健康危害极大。传统处理方法如蒸发浓缩法、化学法电解法仅适用于高浓度重金属废水的处理,对几十mg/L以下的低浓度重金属废水处理效果不佳,技术上亦不经济。近年来,将EDI技术用于低浓度重金属废水处理方面的研究日益增多,并在分离效率、无二次污染等方面展示出显著的技术优势。事实上,EDI原理最初提出的目的即是用于处理核设施产生的低水平放射性废水。1971年,前苏联莫斯科放射性废物处理站以ED与EDI组成联合系统试验处理低水平放射性废液。结果表明,一定条件下料液盐质量浓度可由初始的1000~1200mg/L降至25mg/L以下,总β可降低至原来的1/100~1/50,与离子交换法相比,工艺费用大大降低。

化工产品分离

EDI技术长期以来一直限于水和废水处理领域的应用,对其他物料处理的应用还不多见。实际上,根据EDI的工作原理,经处理的物系分成2股流路:一股离子浓度降低,得到纯化;另一股则浓度升高,得以浓缩,这为化工产品的分离提纯提供了新的思路。Elleuch曾采用EDI工艺对2种浓度的工业磷酸进行纯化,结果显示经5h的处理后,工业磷酸中的Mg2+、Cr3+、Cd2+、Zn2+等金属杂质去除了30%,并指出这为更高浓度工业磷酸的纯化分离带来了希望。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}