更新时间:2024-10-10 18:27
双狭缝干涉是指平行的单色光投射到一个有两条狭缝的挡板上。
在量子力学里,双缝实验(double-slit experiment)是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。
双缝实验的基本仪器设置很简单,将像激光一类的相干光束照射于一块刻有两条狭缝的不透明板,通过狭缝的光束,会抵达照相胶片或某种探测屏,从记录于照相胶片或某种探测屏的辐照度数据,可以分析光的物理性质。光的波动性使得通过两条狭缝的光束相互干涉,形成了显示于探测屏的明亮条纹和暗淡条纹相间的图样,明亮条纹是相长干涉区域,暗淡条纹是相消干涉区域,这就是双缝实验著名的干涉图样。
在经典力学里,双缝实验又称为“杨氏双缝实验”,或“杨氏实验”、“杨氏双狭缝干涉实验”,专门演示光波的干涉行为,是因物理学者托马斯·杨而命名。假若,光束是以粒子的形式从光源移动至探测屏,抵达探测屏任意位置的粒子数目,应该等于之前通过左狭缝的粒子数量与之前通过右狭缝的粒子数量的总和。根据定域性原理(principle of locality),关闭左狭缝不应该影响粒子通过右狭缝的行为,反之亦然,因此,在探测屏的任意位置,两条狭缝都不关闭的辐照度应该等于只关闭左狭缝后的辐照度与只关闭右狭缝后的辐照度的总和。但是,当两条狭缝都不关闭时,结果并不是这样,探测屏的某些区域会比较明亮,某些区域会比较暗淡,这种图样只能用光波动说的相长干涉和相消干涉来解释,而不是用光微粒说的简单数量相加法。
双缝实验也可以用来检试像中子、原子等等微观物体的物理行为,虽然使用的仪器不同,仍旧会得到类似的结果。每一个单独微观物体都离散地撞击到探测屏,撞击位置无法被预测,演示出整个过程的概率性,累积很多撞击事件后,总体又显示出干涉图样,演示微观物体的波动性。
2013年,一个检试分子物理行为的双缝实验,成功演示出含有810个原子、质量约为10000amu的分子也具有波动性。
理查德·费曼在著作《费曼物理学讲义》里表示,双缝实验所展示出的量子现象不可能、绝对不可能以任何经典方式来解释,它包含了量子力学的核心思想。事实上,它包含了量子力学唯一的奥秘。透过双缝实验,可以观察到量子世界的奥秘。
随着科技的快速进步,现在已发展出来能够可靠地发射单独电子的物理仪器。使用这种单独电子发射器来进行双缝实验,可以使得在任意时间最多只有一个电子存在于发射器与探测屏之间,因此,每一次最多只有一个电子通过双狭缝,而不是一大群电子在很短时间间隔内挤着要通过双狭缝。值得注意的是,探测屏累积很多次电子冲击事件之后,会显示出熟悉的干涉图样。从这图样可以推论,单独电子似乎可以同时刻通过两条狭缝,并且自己与自己干涉。这解释并不符合平常观察到的离散物体的物理行为,人们从未亲眼目睹老虎在同时刻穿越过两个并排的火圈,这并不是很容易从直觉就能够赞同的结果。可是,从原子到更复杂的分子,包括巴基球,这些微观粒子都会产生类似现象。
不论是电子、中子或是任何其它量子尺寸的粒子,在双缝实验里,粒子抵达探测屏的位置的概率分布具有高度的决定性。量子力学可以精确地预测粒子抵达探测屏任意位置的概率密度,可是,量子力学无法预测,在什么时刻,在探测屏的什么位置,会有一个粒子抵达。这无可争议的结果,是经过多次重复地实验而得到的。这结果给予了科学家极大的困惑,因为无法预测粒子的抵达位置,这意味着没有任何缘由而发生的粒子的抵达事件。很多物理学者非常不愿意接受的这种事实。。尽管量子力学可以正确地预测实验结果,量子力学不能解释为什么会发生这类现象,为什么粒子似乎可以同时通过两条狭缝?阿尔伯特·爱因斯坦认为,从这里可以推论量子力学并不完备,一个完备的理论必须对这些难题给出满意解释。尼尔斯·玻尔反驳,这正好显示出量子力学的优点,量子力学不会用不恰当的经典概念来解释这种量子现象,如果必要,量子力学可以寻找与应用新的概念来解释这些难题。
试想一个思想实验,假设装置探测器来观察光子到底是从那一条狭缝经过,因此能够获得路径信息(不论是否真正读取这路径信息),则干涉图样会消失。这种路径实验演示出粒子性与波动性的互补原理,光子可以表现出粒子性,也可以表现出波动性,但不能同时表现出粒子性与波动性。虽然这思想实验对于量子力学的基础理论极为重要,直到1970年代,没有出现任何可能的技术体现这思想实验的提议。实际而言,这类实验也无法简单地设置,因为旧式探测器会将光子吸收。但现今,已完成多个实验展示关于互补性的各各方面,例如量子擦除实验。
于 1987 年完成的一个实验发现了一个惊人的结果,假若只获得部分路径信息,则干涉图样不会完全消失。这实验显示,假若测量的动作不过度搅扰粒子的运动,则干涉图样也只会对应地被改变。在恩格勒-格林柏格对偶关系式,有对于这方面量子行为的详细数学论述。
量子擦除实验与延迟选择实验是双缝实验更为进阶的变版,能够演示更多量子力学的特色。
量子擦除实验演示,借着擦除路径信息,可以恢复波动行为所产生的干涉图样。这实验有三个步骤:
延迟选择实验演示,在粒子抵达探测屏之后,可以借着擦除或标记路径信息,恢复或摧毁干涉图样。这种时间差距关系,理论上甚至可以拉长至非常长久。假若标记路径信息,则粒子只通过了一条路径;假若擦除路径信息,则粒子同时通过了两条路径。这意味着,观察者现在的行为可以决定过去发生的事,而这一结论是与传统实在观相违背的。
1967年,傅立诰(R. Pfleegor)与曼德尔(L. Mandel)完成实验演示,使用两个激光源,可以产生“双源干涉”,假若探测器获得光子是从哪个激光器发射出来的路径信息,则在探测屏不会显示出干涉图样;假若不存在路径信息,则在探测屏会显示出干涉图样。这意味着当探测屏显示出干涉图样时,无法得知光子的发射源是哪个激光器。
1972年,理查德·西利托与凯瑟琳·威克斯(Catherine Wykes)将双缝实验做修改,在任何时间,只有一条狭缝是开放的,另外一条狭缝是关闭的。参予干涉作用的光子的平均密度超小于 1 ,在任何时间,光子只能经过两条狭缝中的一条狭缝。虽然如此,假若路径程差允许抵达探测屏的光子可以来自任意一条狭缝,干涉图样仍旧能被观察到.。
近几年来的科学研究,更进一步地发现了,干涉现象并不只限制于像质子、中子、电子等等基本粒子。用双缝实验检试大分子构造,像富勒烯
2012年,内布拉斯加大学林肯分校的物理系研究团队实现了理查·费曼所描述的双缝思想实验。该实验使用最新仪器,可以随意控制每一条真正狭缝的关闭与开放。该实验检试电子在以下三种状况所出现的物理行为:第一条狭缝开放与第二条狭缝关闭、第一条狭缝关闭与第二条狭缝开放、两条狭缝都开放。实验结果符合量子力学的量子叠加原理,演示出电子的波动性。该实验还实际探测到电子一个一个的抵达探测屏,演示出电子的粒子性。
哥本哈根诠释为许多先驱量子力学学者的共识。哥本哈根诠释明确地阐明,数学公式和精确实验给出很多关于原子尺寸的知识,任何大胆假设都不应该超越这些知识范围。概率波是一种能够预测某些实验结果的数学构造。它的数学形式类似物理波动的描述。概率波的概率幅,取其绝对值平方,则可得到可观测的微观物理现象发生的概率。应用概率波的概念于双缝实验,物理学家可以计算出微观物体抵达探测屏任意位置的概率。
除了光子的发射时间与抵达探测屏时间以外,在这两个时间之间任何其它时间,光子的位置都无法被确定;为了要确定光子的位置,必须以某种方式探测它;可是,一旦探测到光子的位置,光子的量子态也会被改变,干涉图样也因此会被影响;所以,在发射时间与抵达探测屏时间之间,光子的位置完全不能被确定。
一个光子,从被太阳发射出来的时间,到抵达观察者的视网膜,引起视网膜的反应的时间,在这两个时间之间,观察者完全不知道,发生了什么关于光子的事。或许这论点并不会很令人惊讶;可是,从双缝实验可以推论出一个很值得注意的结果;假若,用探测器来探测光子会经过两条狭缝中的那一条狭缝,则原本的干涉图样会消失不见;假若又将这探测器所测得路径信息摧毁,则干涉图样又会重现于探测屏(更详尽内容,请参阅条目量子擦除实验),这引人思维的现象将双缝实验的程序与结果奥妙地连结在一起。
路径积分表述是理查·费曼提出的一个理论(费曼强调这个表述只是一种数学描述,而并不是尝试描述某些无法观察到的真实程序)。路径积分表述不采用粒子的单独唯一运动轨道这种经典概念,取而代之的是所有可能轨道的总和。使用泛函积分,可以计算出所有可能轨道的总和。
路径积分表述阐明,假设一个光子要从发射点 a 移动至探测屏的位置点 d ,它会试着选择经过所有的可能路径,包括选择同时经过两条狭缝的路径;可是,假若用探测器,来观察光子会经过两条狭缝中的那一条狭缝,整个实验设置立刻有所改变;假设探测器的位置为点e,而探测器观察到光子,则新的路径是从点 e到点 d;这样,在点e与点d 之间,只有空旷的空间,并没有两条狭缝,所以不会出现干涉图样。