更新时间:2024-08-21 14:11
周会,男,博士,清华大学能源与动力工程系特别研究员、博士生导师。
主要研究领域为碳中和技术与可再生能源利用技术,具体包括:
Carbon Capture Science & Technology,执行主编
Frontiers in Energy Research,副主编
Applied Energy,客座编辑
2023年国际碳捕集科学与技术会议,大会主席
Green Energy & Environment,青年编委
Material Today Sustainability,青年编委
美国化学会,会员英国皇家化学会,副会员
北京能源与环境学会京津冀专家委员会委员
European Commission Research Executive Agency,基金评审专家
美国化学会第256届年会生物质分论坛,主席
2024 侯德榜化工科学技术奖青年奖
2023 北京市优秀青年人才
2023 强国青年科学家
2023 未来化工学者
2023 达摩院青橙奖最具潜力奖
2023 Journal of Material Chemistry新锐奖
2021 中国十大新锐科技人物
2020 MCCA最佳创新者奖(每年仅1人)
2019 国际空气与废物协会Arthur C. Stern 杰出论文奖
2018 欧盟玛里居里学者项目
2015 Springer Nature Outstanding Thesis Award
2015 清华大学优秀博士毕业生
2015 清华大学优秀博士论文一等奖
2015 清华大学学术新秀提名奖
2015 清华大学热能系学术新秀
2015 清华大学优秀共产党员
2015 清华大学优秀研究生党员标兵
2014 清华大学“一二・九”奖学金
2014 清华大学林枫辅导员奖
2014 国家奖学金
2013 清华大学“一二・九”辅导员奖
2013 清华大学综合一等奖学金
2023 入选2023“强国青年科学家”名单。
学术专著
[1] 张衍国, 周会, 龙艳秋, 李清海. 可燃固废的热解气化与燃烧. 北京: 科学出版社; 2022.
[2] Zhou H. Combustible Solid Waste Thermochemical Conversion. Springer-Nature; 2017. (ISBN 978-981-10-3826-6, 172 pages)
[3] Zhang Y, Li Q, Zhou H. Theory and Calculation of Heat Transfer in Furnaces. Elsevier; 2016. (ISBN 978-0-12-800966-6, 350 pages)
代表性期刊论文
[1] Yu S, Dong X, Zhao P, Luo Z, Sun Z, Yang X, Li Q, Wang L*, Zhang Y*, Zhou H*. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications 2022;13:3616. doi: 10.1038/s41467-022-31352-x (Editors’ Highlights,高被引论文)
[2] Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici M*, Zhou H*. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials 2024.
[3] Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis 2021;4:860–71. (封面文章)
[4] Zhou H, Chen Z, Kountoupi E, Tsoukalou A, Abdala PM, Florian P, et al. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications 2021;12:5510.
[5] Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, et al. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu–Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol. JACS Au 2023. doi: 10.1021/jacsau.3c00319
[6] Zhou H, Wang H, Sadow A, Slowing I. Toward Hydrogen Economy: Selective Guaiacol Hydrogenolysis under Ambient Hydrogen Pressure. Applied Catalysis B: Environmental 2020:118890.
[7] Zhou H, Wang H, Perras FA, Naik P, Pruski M, Sadow AD, et al. Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry 2020;22:4676–82.
[8] Zhou H*, Park AHA. Bio-Energy with Carbon Capture and Storage (BECCS) via Alkaline Thermal Treatment: Production of High Purity H2 from Wet Wheat Straw Grass with CO2 Capture. Applied Energy. 2020;264.
[9] Zhao X (1), Zhou H (1), Sikarwar V, Zhao M, Park A, Fennell P, Shen L, Fan L. Biomass-based Chemical Looping Technologies: the Good, the Bad and the Future. Energy & Environmental Science 2017:10:1885-1910. (封面文章,ESI高被引论文)
[10] Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable & Sustainable Energy Reviews 2014;36:107-22. (ESI高被引论文)
其他论文
2024
[1] Zhang S, Wu M, Qian Z, Li Q, Zhang Y, Zhou H. CO rich syngas production from catalytic CO2 gasification-reforming of biomass components on Ni/CeO2. Fuel 2024;357:130087.
[2] Xu Y, Yang Y, Wu M, Yang X, Bie X, Zhang S, et al. Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico Chimica Sinica 2024;40:2304003.
2023
[3] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.
[4] Yu S, Li Q, Zhang Y, Zhou H*. New Possibility for PET Plastic Recycling by a Tailored Hydrolytic Enzyme. Green Energy & Environment 2023. doi: 10.1016/j.gee.2023.02.007
[5] Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho S-H, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Lett. 2023, 15, 35.
[6] 陈荣杰, 王龙洲, 李清海, 周会, 张衍国. 响应曲面法优化木质素水热转化生产生物油. 可再生能源 2023:285–90.
[7] Chen J, Duan L, Ma Y, Jiang Y, Huang A, Zhu H, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review. Fuel 2023;334:126630.
[8] 于士杰, 赵鹏, 刘茂清, 高宇, 李清海, 张衍国, et al. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响. 燃料化学学报 2023;51:1–9.
[9] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.
[10] Liu Q (1), Jiang D (1), Zhou H (1), Yuan X, Wu C, Hu C, et al. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proceedings of the National Academy of Sciences 2023;120:e2305078120.
[11] Cong K, Yang F, Zhou H, Zhang Y, Li Q. A pilot-scale test facility of 500 kWth for industrial CFB boilers on low nitrogen combustion-discussion of design, experiment, and economic analysis. Energy 2023;284:128657.
2022
[12] Yang Y, Xu Y, Li Q, Zhang Y, Zhou H*. Two-dimensional Carbide/Nitride (MXenes) Materials in Thermal Catalysis. J Mater Chem A 2022;10:19444-19465.
[13] Yu S, Wang L, Li Q, Zhang Y, Zhou H*. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability 2022;19:100209.
[14] Yu S, Zhao P, Yang X, Li Q, Mohamed BA, Saad JM, Zhang Y, Zhou H*. Low-temperature hydrothermal carbonization of pectin enabled by high pressure. Journal of Analytical and Applied Pyrolysis 2022;166:105627.
[15] Zhang S, Yu S, Li Q, Mohamed BA, Zhang Y, Zhou H*. Insight into the relationship between CO2 gasification characteristics and char structure of biomass. Biomass and Bioenergy 2022;163:106537.
[16] Chen J, Xu Y, Liao P, Wang H, Zhou H*. Recent Progress in Integrated CO2 Capture and Conversion Process Using Dual Function Materials: A State-of-the-Art Review. Carbon Capture Science and Technology 2022;4:100052.
[17] Yu S, Zhao P, Yang X, Li Q, Zhang Y, Zhou H*. Formation and evolution of pectin-derived hydrothermal carbon from pectin. Fuel 2022;326:124997.
[18] Yu S, Xie M, Li Q, Zhang Y, Zhou H*. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. Journal of the Energy Institute 2022;103:147–53.
[19] Yang X, Zhou H, Li Q, Tan Z, Zhang Y. Characterization of blast furnace slag particles generated by nitrogen jet granulation. The Canadian Journal of Chemical Engineering 2022
[20] Yu S, Yang X, Zhao P, Li Q, Zhou H*, Zhang Y*. From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure. Journal of the Energy Institute 2022;101:194–200.
[21] Chen R, Li H, Li K, Zhang S, Li Q, Zhou H*, et al. Hydrothermal Liquefaction of Scrap Tires: Optimization of Reaction Conditions and Recovery of High Value-Added Products. Frontiers in Energy Research 2022;10.
2021
[22] Yu S, Yang X, Xiang J, Li Q, Zhou H*, Zhang Y*. Statistical study of the distribution of voidage in a bubbling fluidized bed with a constant section. Chemical Engineering Research and Design 2021;171:305–16.
[23] Yu S, Yang X, Zhou H, Tan Z, Cong K, Zhang Y, et al. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021;9:1335.
[24] Chen R, Zhang S, Yang X, Li G, Zhou H, Li Q, et al. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Waste Management 2021;126:331–9.
[25] Saad JMd, Williams PT, Zhang YS, Yao D, Yang H, Zhou H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis 2021;156:105135.
[26] Mohamed BA, Bi X, Li LY, Leng L, Salama E-S, Zhou H. Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal 2021;426:131294.
[27] Yu S, Yang X, Xiang J, Zhou H, Li Q, Zhang Y. Effects of bed size on the voidage in gas-solid bubbling fluidized beds. Powder Technology 2021;387:197–204.
2020
[28] Zhou H*, Saad J, Li Q, Xu Y. Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. Waste Management 2020;104:42–50.
[29] Zhao M, Memon MZ, Ji G, Yang X, Vuppaladadiyam AK, Song Y, Raheem A, Li J, Wang W, Zhou H*. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy 2020;148:168–75.
[30] Wang F, Cheng B, Ting ZJ, Dong W, Zhou H, Anthony E, et al. Two-Stage Gasification of Sewage Sludge for Enhanced Hydrogen Production: Alkaline Pyrolysis Coupled with Catalytic Reforming Using Waste-Supported Ni Catalysts. ACS Sustainable Chem Eng 2020;8:13377–86.
2019
[31] Zhao M, Wang F, Fan Y, Raheern A, Zhou H*. Low-temperature alkaline pyrolysis of sewage sludge for enhanced H-2 production with in-situ carbon capture. Int J Hydrogen Energ. 2019:44, 8020–8027.
[32] Zhao M, Cui X, Ji G, Zhou H, Vuppaladadiyam AK, Zhao X. Alkaline Thermal Treatment of Cellulosic Biomass for H 2 Production Using Ca-Based Bifunctional Materials. ACS Sustainable Chem Eng 2019;7:1202–9.
2018
[33] Surenderan L, Saad JM, Zhou H, Neshaeimoghaddam H, Abdul Rahman A. Characterization Studies on Waste Plastics as a Feedstock for Energy Recovery in Malaysia. IJET 2018;7:534.
[34] Zhou H, Naik P, Slowing I, Sadow A. Mechanism study of production of cyclohexanol/cyclohexanone from lignin-derived guaiacol catalyzed by palladium on high-surface-area ceria at mild conditions. Abstracts of Papers of the American Chemical Society 2018;256.
[35] Long Y, Li Q, Zhou H, Meng A, Zhang Y. A grey-relation-based method (GRM) for thermogravimetric (TG) data analysis. J Mater Cycles Waste Manag 2018;20:1026–35.
2017
[36] Chen X, Jiang J, Yan F, Li K, Tian S, Gao Y, et al. Dry Reforming of Model Biogas on a Ni/SiO 2 Catalyst: Overall Performance and Mechanisms of Sulfur Poisoning and Regeneration. ACS Sustainable Chemistry & Engineering 2017;5:10248–57.
[37] Zhao X (1), Zhou H (1), Sikarwar V, Zhao M, Park A, Fennell P, Shen L, Fan L. Biomass-based Chemical Looping Technologies: the Good, the Bad and the Future. Energy & Environmental Science 2017:10:1885-1910. doi: 10.1039/C6EE03718F (共同一作,封面文章, ESI高被引论文)
[38] Hou C, Wu Y, Jiao Y, Huang J, Wang T, Fang M, et al. Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption. Journal of Zhejiang University-SCIENCE A 2017;18:819–30.
[39] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta 2017.
[40] Long Y, Li Q, Zhou H, Meng A, Zhang Y. Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste, Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste. Journal of Tsinghua University(Science and Technology) 2017;57:1324–30.
[41] Long Y, Meng A, Chen S, Zhou H, Zhang Y, Li Q. Pyrolysis and Combustion of Typical Wastes in a Newly Designed Macro Thermogravimetric Analyzer: Characteristics and Simulation by Model Components. Energy Fuels 2017;31:7582–90.
2016
[42] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology 2016;144:299-304.
[43] Long Y, Zhou H*, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean Journal of Chemical Engineering 2016;33:2638-43.
[44] Long Y, Zhou H, Meng A, Li Q, Zhang Y. Pseudo-component method to predict interaction features of biowaste and plastics. Abstracts of Papers of the American Chemical Society 2016;252.
[45] Long Y, Meng A, Zhou H, Qin L, Zhang Y, Li Q. Pyrolysis characteristics of 18 kinds of biomass waste. Abstracts of Papers of the American Chemical Society 2016;252.
[46] 张衍国, 蒙爱红, 周会, 龙艳秋, 武景丽. 以低二恶英排放为目标的氧化/还原气氛下可燃固体废弃物热化学转化机理. 科技创新导报 2016:162–3.
2015
[47] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances 2015;5:11371-7.
[48] Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances 2015;5:26509-16.
[49] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management 2015;36:136-46.
[50] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 2015;145:151-7.
[51] Zhou H, Meng A, Long Y, Li Q, Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 2015;36:106-18.
[52] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management 2015;38:194-200.
[53] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis 2015;111:265-71.
[54] Xiong S, Zhuo J, Zhou H, Pang R, Yao Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. Journal of Analytical and Applied Pyrolysis 2015;112:66–73.
[55] Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management 2015;46:247–56.
[56] Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel 2015;157:1–8.
[57] Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y. TGA pyrolysis and gasification of combustible municipal solid waste. Journal of the Energy Institute 2015;88:332–43.
2014
[58] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels 2014;28:6371-9.
[59] Zhou H, Wu C, Meng A, Zhang Y, Williams PT. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis 2014;110:264-9.
[60] Zhou H, Sun J, Meng A, Li Q, Zhang Y. Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration. Chinese Journal of Chemical Engineering 2014;22:1347-51.
[61] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Waste Management Association 2014;64:597-616.
[62] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis 2014;108:19-25.
[63] Li Q, Meng A, Li L, Zhou H, Zhang Y. Investigation of biomass ash thermal decomposition by thermogravimetry using raw and artificial ashes. Asia-Pacific Journal of Chemical Engineering 2014;9:726–36.
[64] 蒙爱红, 龙艳秋, 周会, 张衍国, 李清海. 可燃固体废弃物热化学反应表征探索. 清华大学学报(自然科学版) 2014;54:235–9.
[65] 孙进, 李清海, 李国岫, 周会, 秦岭, 张衍国. 城市生活垃圾焚烧中氯化物对铜迁移转化特性的影响. 中国电机工程学报 2014:1245–52.
2013
[66] Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta 2013;566:36-43.
Meng A, Zhou H, Qin L, Zhang Y, Li Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 2013;104:28–37.