更新时间:2023-11-23 21:15
回归直线法,是根据一系列历史成本资料,用数学上的最小平方法的原理,计算能代表平均成本水平的直线截距和斜率,以其作为固定成本和单位变动成本的一种成本分解方法。
回归直线法在理论上比较健全,计算结果精确,但是,计算过程比较烦琐。如果使用计算机的回归分析程序来计算回归系数,这个缺点则可以较好地克服。
根据一系列历史成本资料,运用数学上的最小平方法原理,计算能代表平均成本水平的直线截距(a)和斜率(b),以其作为固定成本和单位变动成本。
假设在散布图中有一条y=a+bx的直线,这条直线与各实际成本点的误差值之和比其他直线都要小,则这条直线就最能代表各期成本的平均水平,被称之为离散各点的回归直线;这一直线方程也被称为回归方程。
确定回归方程的计算公式:
b=(n∑xiyi-∑xi·∑yi)÷[n∑xi2-(∑xi)^2]
a=[(∑xi^2)∑yi-∑xi·∑xiyi]÷[n∑xi^2-(∑xi)^2]
其中xi、yi代表已知的观测点。
另有一种求a和b的“简捷”,其公式是:
b=(n∑xy-∑x·∑y)÷[n∑x^2-(∑x)^2]
a=(∑x^2∑y-∑x·∑xy)÷[n∑x^2-(∑x)^2]
以表2-3为例,可据以得表2-4:
表 2-4
将表2-4中的有关数字代入上述计算公式,得:
b=(n∑xiyi-∑xi·∑yi)÷[n∑xi2-(∑xi)2]
=(12×10 715 000-12 600×10 051)÷[12×13 770 000-(12 600)^2]
=0.30
a=(∑xi2∑yi-∑xi·∑xiyi)÷[n∑xi2-(∑xi)2]
=(13 770 000×10 051-12 600×10 715 000)÷[12×13 700 000-(12 600)^2]
=523.65
因此得:y=523.65+0.3x
借助于回归直线法,使半变动成本的分解建立在科学分析和精确计算的基础之上,可以得到较为精确的结果,但是计算量较大。