灰度值

更新时间:2023-11-17 21:37

由于景物各点的颜色及亮度不同,摄成的黑白照片上或电视接收机重现的黑白图像上各点呈现不同程度的灰色。

含义

在计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度。但是,在数字图像领域之外,“黑白图像”也表示“灰度图像”,例如灰度的照片通常叫做“黑白照片”。在一些关于数字图像的文章中单色图像等同于灰度图像,在另外一些文章中又等同于黑白图像。

灰度使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像。 每个灰度对象都具有从 0%(白色)到100%(黑色)的亮度值。 使用黑白或灰度扫描仪生成的图像通常以灰度显示。

使用灰度还可将彩色图稿转换为高质量黑白图稿。 在这种情况下,Adobe Illustrator 放弃原始图稿中的所有颜色信息;转换对象的灰色级别(阴影)表示原始对象的亮度。

将灰度对象转换为 RGB 时,每个对象的颜色值代表对象之前的灰度值。 也可以将灰度对象转换为 CMYK 对象。

自然界中的大部分物体平均灰度为18%。

在物体的边缘呈现灰度的不连续性图像分割就是基于这个原理。

所谓颜色或灰度级指黑白显示器中显示像素点的亮暗差别,在彩色显示器中表现为颜色的不同,灰度级越多,图像层次越清楚逼真。灰度级取决于每个像素对应的刷新存储单元的位数和显示器本身的性能。如每个象素的颜色用16位二进制数表示,我们就叫它16位图,它可以表达2的16次方即65536种颜色。如每一个象素采用24位二进制数表示,我们就叫它24位图,它可以表达2的24次方即16777216种颜色。

灰度就是没有色彩,RGB色彩分量全部相等。如果是一个二值灰度图象,它的象素值只能为0或1,我们说它的灰度级为2。用个例子来说明吧:一个256级灰度的图象,如果RGB三个量相同时,如:RGB(100,100,100)就代表灰度为100,RGB(50,50,50)代表灰度为50。

Gamma校正

RGB值与功率并非简单的线性关系,而是幂函数关系,这个函数的指数称为Gamma值,一般为2.2,而这个换算过程,称为Gamma校正

为什么显示器要Gamma校正呢?因为人眼对亮度的感知和物理功率不成正比,而是幂函数的关系,这个函数的指数通常为2.2,称为Gamma值。

打个比方,功率为50%的灰色,人眼实际感知亮度为

而人眼认为的50%中灰色,实际功率

所以RGB中的灰度值,为了考虑到较小的存储范围(0~255)和较平衡的亮暗部比例,所以需要进行Gamma校正,而不是直接对应功率值,因此RGB值RGB颜色值不能简单直接相加,而是必须用2.2次方换算成物理光功率后才能进行下一步计算。这一点在下面的灰度计算公式中就有所体现。

计算方法

任何颜色都由红、绿、蓝三基色组成,假如原来某点的颜色为RGB(R,G,B),那么,我们可以通过下面几种方法,将其转换为灰度:

1.浮点法:Gray=R*0.3+G*0.59+B*0.11

2.整数法:Gray=(R*30+G*59+B*11)/100

3.移位法:Gray =(R*77+G*151+B*28)>>8;

4.平均值法:Gray=(R+G+B)/3;

5.仅取绿色:Gray=G;

以上五种老式算法计算值均有误差,这些方法对于Gamma校正的图片(平常所见到的24位真彩色图片均为Gamma校正的图片)并不适用。

为什么呢?因为刚才说了,Gamma校正后的分量值不是物理上的功率,不能直接相加,因此,需要提出一种全新的,改进的算法来纠正这一问题。

6.Gamma校正算法:

注意这里的2.2次方和2.2次方根,RGB颜色值不能简单直接相加,而是必须用2.2次方换算成物理光功率。因为RGB值与功率并非简单的线性关系,而是幂函数关系,这个函数的指数称为Gamma值,一般为2.2,而这个换算过程,称为Gamma校正。

求得Gray后,将原来的RGB(R,G,B)中的R,G,B统一用Gray替换,形成新的颜色RGB(Gray,Gray,Gray),用它替换原来的RGB(R,G,B)就是灰度图了。鉴于精确度的要求,在高质量图片处理中最好使用公式6进行计算,以保证准确度

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}