多糖类化合物

更新时间:2023-11-19 16:44

多糖类化合物是灵芝所含化学成分之一,现已证明,灵芝多糖类具有抗肿瘤作用、免疫调节作用、降血糖作用、降血脂作用、抗氧化作用和抗衰老作用,故灵芝多糖类是灵芝的主要有效成分。临床试验也证实,灵芝多糖可作为肿瘤化学治疗和放射治疗的有效辅助治疗药。

分离纯化鉴定

灵芝多糖类的分离

灵芝多糖类分离纯化及结构确证的方法及步骤可概括如下:多采用热水提取、分部沉淀的方式分离灵芝的多糖组分;进一步经各种层析如DEAE纤维素柱色谱、Sephadex G75柱色谱,凝胶过滤如Sepharose CL—4B凝胶过滤,高压电泳和聚丙酰胺凝胶电泳等处理可获纯化的多糖;后者经酸水解、纸色谱、气相色谱分析可确定其单糖组分,经酶水解可检测殊碳糖(anomeric)结构;经甲基化技术及Smith降解气相色谱、气质联用、紫外及红外光谱分析核磁共振等可确定多糖的连接方式和基本化学结构。

平均分子量

多糖的分子量可通过凝胶柱色谱如SephadeaxG—100柱色谱、超离心测沉降系数等方法测定,一般在测得分子量范围后,求出平均分子量

理化特性

生物活性有差异

由于灵芝的种类、产地、分离提取方法各异,所获灵芝多糖的理化特性、分子量、单糖组分和连接方式不同,生物活性亦有差异。如Hiroshi等(1985)报道,赤芝子实体热水提取物经浓缩、透析及系列色谱后获得两种多糖ganoderan A和B。ganoderan A的分子量9 300,旋光度[α]D+58.8°,ganoderan B分子量3 600,旋光度[α]+33.3°,二者对小鼠均具降血糖作用。

两个降血糖有效成分

随后,他们又从赤芝子实体中分离出两个降血糖有效成分ganoderan B和C,均为糖肽,分子量分别为7 400和5 800。物理化学和化学研究证明,ganoderan B含吡喃葡萄糖酰基β-1→3主链和β-1→6侧链,ganoderan C则含D-吡喃葡萄糖酰基β-1→3和β-1→6连接和D-吡喃半乳糖酰基α-1→6连接。Mizuno等(1986)报告,赤芝子实体经85%乙醇(80℃),热水(100℃),3%草酸铵(100℃)和5%氢氧化钠(30℃)提取后,残渣再用5%氢氧化钠(含0.1%硼氢化钠,80℃),20%氢氧化钠(含0.1%硼氢化钠,30℃)和5%氯化锂(溶于二甲醋酸铵中,70℃)提取,获多糖组分A、B、C。

A和B经乙醇分离

醋酸沉淀,Sepharose CL-4B凝胶过滤,得4个β-葡聚糖,其中I和II来自A,III和IV来自B。从C分离出脱乙酰壳多糖(chitosan)(V)。I—V经80%甲酸(85℃)处理可获相应的甲酰化多糖和低分子量多糖。I—IV主要由葡萄糖和少量的糖醛酸、木糖、甘露糖组成,并具β-(1→3)-D-葡聚糖主链和β-(1→6)葡萄糖基侧链,其分子量分别为330 000、60 000、160 000和110 000。不同之处是IV不含木糖,但含1.2%蛋白质。V经酸水解后,主要含葡萄糖胺,并含少量葡萄糖,经红外光谱X射线分析证明为脱乙酰壳多糖。给小鼠腹腔注射II、III以及III的甲酸酯和I~IV的低分子量多糖均具有宿主中介性的抗肿瘤活性,半数抑瘤量(ID50)分别为42.5mg/kg、34.1mg/kg、70.2mg/kg、22.4mg/kg、17.0mg/kg、32.1mg/kg和25.8mg/kg。Mizuno等(1985)报告,赤芝子实体经水提取后,其残渣经3%草酸铵溶液(100℃)和5%氢氧化钠溶液(30℃)提取后,得2个水不溶多糖A和B。A经真空浓缩、透析、冻干,Shepharose CL-48凝胶过滤,获主要组分C。B用醋酸中和至pH5~6,得酸性异多糖D,加乙醇沉淀得糖蛋白E和另一种异多糖。C由酸性β-D-葡聚糖构成,含葡萄糖77%、葡萄糖醛酸10.3%以及少量的果糖木糖甘露糖半乳糖,分子量10 000~30 000。D的分离程序同A,它含两个主要成分G和H,G和H均为酸性异多糖,分别含葡萄糖92%和95%,葡糖醛酸9.7%和13.0%以及少量果糖、木糖、甘露糖、乳糖,分子量70 000~100 000。给小鼠腹腔注射A—H对S180均具有抗肿瘤活性,50%抑瘤量为(6.3~26.3)mg/kg,但口服无效。

赤芝子实体经热水提取

1989~1994李荣芷、何云庆等先后报告,赤芝子实体经热水提取,乙醇分部沉淀、透析、除蛋白等步骤得灵芝多糖BN3A、BN3B、BN3C和GL-A、GL-B、GL-C。进一步经DEAE纤维素柱色谱分离,酶解,酸水解,过碘酸氧化,甲酸生成,Smith降解气相色谱、高压液相色谱分析和光谱分析等从BN3B、BN3C、GL-A、GL-B和GL-C中共分离鉴定了18个灵芝多糖均一体,其中5个肽多糖、4个葡聚糖,其余为杂多糖,其化学结构及分子量见表6-4。

化学结构

均一体

化学结构

分子量

BN3B

BN3B1

β(1→6)β(1→3)

葡聚糖

3.50×104

BN3B2

β(1→6)β(1→3)

阿拉伯半乳聚糖

4.00×104

BN3C

BN3C1

β(1→6)β(1→3)

葡聚糖

1.62×104

BN3C2

β(1→6)β(1→3)

肽多糖

2.45×104

GLA

GLA2

肽多糖

0.93×104

GLA4

均以β(1→3)为主

杂多糖

1.33×104

GLA6

含少量β(1→6)及β(1→4)

肽多糖

1.28×104

GLA7

半乳糖葡萄糖为主

杂多糖

1.20×104

GLA8

肽多糖

1.48×104

GLB

GLB2

β(1→4)为主,尚有β(1→6)

葡聚糖

0.71×104

GLB3

β(1→4)为主,极少β(1→6)

甘露葡聚糖

0.77×104

GLB4

β(1→4)

杂多糖

0.90×104

GLB6

β(1→4)含乙酰基

杂多糖

0.88×104

GLB7

β(1→4)为主,尚有β(1→6)

杂多糖

0.90×104

GLB9

β(1→4)为主

半乳葡聚糖

0.93×104

GLB10

β(1→4)β(1→6)含乙酰基

杂多糖

0.68×104

GLC

GLC1

β(1→4)少量β(1→6)

肽多糖

0.57×104

GLC2

β(1→4)少量β(1→6)含乙酰基

葡聚糖

0.60×104

基本化学结构

Mizuno等(1982)经热水提取,乙醇分部沉淀,并经离子交换色谱,pH依赖的Cetavlon处理、凝胶过滤以及Con A-Sepharose GL-4B亲和色谱等纯化,从人工培养的平盖灵芝菌丝体中得到一个多糖组分。进一步通过甲基化核磁共振、过碘酸氧化、Smith降解和β-D-葡聚糖酶(β-D-glucanase)分解等技术研究多糖的化学结构。α-葡聚糖组分具有α(1→4)葡萄糖苷主链,主链上每9~12个残基连接α(1→6)支链,该组分仅有微弱抗肿瘤活性。β-葡聚糖组分具有β(1→3)葡萄糖苷主链,主链上每12个残基通过β(1→6)连接一个单糖苷支链。其中之一显示显著的抗小鼠S180活性,50%抑瘤剂量为0.74mg/kg。

Mizuno和Miyasaki等分别从赤芝、平盖灵芝和紫芝加哥提取出具有抗肿瘤活性的多糖。并确证其基本化学结构。

就抗肿瘤活性

灵芝多糖并无种间差异,它们和从其他真菌中所获多糖一样,具有以下三个特性:

1.初级结构的分子量在3×10^5以上。

2.多聚物的连接方式均有β-1-3-D-残基的主链和β-1-6-D-葡萄糖侧链残基。但从不同真菌提取的多糖的β-1-6-D-葡萄糖的分支程度不等,灵芝多糖的主链残基与侧链残基的比例为5∶2,即每个主链残基环绕2个β-1-6-D-葡萄糖残基。无1-6β侧链的1-3-β葡聚糖未见抗肿瘤活性。

3.多糖的三维螺旋结构参与其抗肿瘤活性,此结构遭破坏则影响其活性。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}