天线增益

更新时间:2023-12-24 11:32

天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。另外,表示天线增益的参数有dBd和dBi。dBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。

简述

当某种辐射源向空间辐射能量时,理想情况下能量是按球状体散射开来,研究和实践都发现,如果将这种能量辐射按某个方向集中发射,则能量所达到的距离以及该方向上所覆盖的范围都会有很大的提高。这种研究成果应用到无线通信中就是天线的由来。而天线增益则是用于定量的描述天线把输入功率(能量)集中辐射的程度,从通信角度讲,就是在某个方向上和范围内产生信号能力的大小。

实际应用中,即使集中某个方向,天线还是会在空间各个方向都有大小不同的增益,天线增益通常是指产生最大增益的方向上的增益,数学上用公式

单位为dBi或者dBd,两者的区别是参考基准不同,前者的参考基准是全方向性天线(在空间各个方向辐射特性相同的天线),后者的参考基准是偶极子天线(可以简单理解为双向天线)。为了更好的理解天线增益,用此公式举例如下:要在空间某点产生一定大小的信号,用理想的辐射源如需126 W的输入功率才能获得,假设某个天线的增益为18 dBd,则用此天线需要输入的功率大小用上面的计算公式列式为

从此公式可以得到,

按照对数的定义可得,

则可以计算得出天线的功率大小。

由此可见,天线增益其实表示的是将理想的辐射能量在空间某点上放大的效果,此例中就是相当于将2 W的辐射能量放大到了126 W辐射能量所达到的效果,从这一点上来看,天线增益与有源电路增益相比有本质区别:有源电路的增益是定量描述某个器件将某个数值的功率真实放大到多少倍的能力。

原理

可以这样来理解增益的物理含义: 在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

半波对称振子的增益为G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。

如果以半波对称振子作比较对象,其增益的单位是 dBd 。

半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 ,取对数得零值。)垂直四元阵,其增益约为G=8.15 –2.15=6dBd 。

分析

为了比较天线接收信号的能力优劣。把无方向性的半波振子天线(其方向为两个圆)的灵敏度定为0db,相比之下,灵敏度高方向性好的天线就出现了增益。

理想的全向天线的增益定义为1. 实际上所谓理想的全向天线在现实世界是不存在的,但是在此理想的条件下,可以很容易计算出在空间的微波功率分布情况。 与发射功率相同的一个实际的天线的最大辐射指向位置测得的功率相比,就可以得出天线的增益. 顺便说一下,前面先生说半波振子是全向天线,增益为1 的说法不一定妥当,它在H面上是全向的,但在E面上,主瓣半功率宽度为90度,天线增益大于1。

天线的增益和有源电路的增益是有根本区别的。

天线增益的测量

测试设备为信号源,频谱仪或其他信号接收设备和点源辐射器。

1.先用理想(当然是近似理想)点源辐射天线,加入一功率;然后再距离天线一定的位置上,用频谱仪或接收设备测试接收功率。测得的接收功率为P1

2.换用被测天线,加入相同的功率,在同样的位置上重复上述测试,测得接收功率为P2;

3.计算增益:G=10Lg(P2/P1)

就这样,得到了天线的增益。

计算公式

1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:

G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}

式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;

32000 是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益:

G(dBi)=10Lg{4.5×(D/λ0)2}

式中,D 为抛物面直径;

λ0为中心工作波长;

4.5 是统计出来的经验数据。

3)对于直立全向天线,有近似计算式

G(dBi)=10Lg{2L/λ0}

式中,L 为天线长度;

λ0 为中心工作波长;

意义

天线增益不仅是天线最重要的参数之一,而且对无线通信系统的运行质量也非常重要,增加天线增益,就可以增大某个方向上的信号覆盖范围,或者范围不变,但该范围内的信号强度增强。对于单天线而言,要想提高天线的增益,最简单的办法就是将天线的发射方向进一步缩窄,就是所谓的缩窄波瓣宽度。而这种方法在实际应用中对系统性能改善毕竟有限。通常直接提升带宽和频谱的方法也会受到各种条件制约,也不能无限制地增加。在带宽和频谱不变的前提下,为了提高系统的用户容量、数据吞吐量和覆盖距离和范围,智能天线技术和MIMO技术应运而生。其中智能天线技术利用多个天线组成天线阵列,利用天线之间的位置关系,通过向用户发送相同的数据,相当于某个方向上集中辐射能量,从而提高天线增益,而MIMO技术则在收发端都采用多个天线系统,利用多径传播等电磁波特性,发收不同数据,提高传输效率的同时,实现了空间复用。从天线增益角度看,也可以认为不增大单个天线增益,而是增加天线数量,从而获得收发天线增益乘积的效果。另外,无论天线阵列还是MIMO技术在传输信号时都采用了分集的技术,而该技术能够降低信号衰落的机会,减小信噪比的波动,从而获取一部分额外的增益,称之为分集增益。MIMO技术已经在基于LTE技术的4G网络中得到广泛应用。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}