更新时间:2023-11-23 10:54
1993.09–1997.07,西华师范大学,化学教育(学士);
2000.09–2005.12,中科院长春应化所,分析化学(博士);
1997.07–2004.10,西华师范大学化学化工学院,助教;
于2004年破格晋升为副教授,并于2006年破格晋升为教授;
2006.04–2007.05,德国Konstanz University化学系,博士后(洪堡学者);
2007.06–2008.05,加拿大Toronto University药理系,博士后;
2008.06–2009.07,美国Purdue University化学系,博士后;
2010.01–2015.09,中科院长春应化所电分析化学国家重点实验室,研究员,博导;
2011.11–,沙特King Abdulaziz University化学系,兼职教授;
2015.10–,四川大学化学学院,教授;
现为美国化学会(ACS)、英国皇家化学会(RSC)、荷兰Elsevier和德国Wiley等出版公司发行期刊的特约审稿人。
Journal of Nanomaterials, American Journal of Nanotechnology, AmericanJournal ofAnalyticalChemistry,Biochemistry and Analytical Biochemistry等杂志编委
2006年4月~2007年5月,在德国洪堡奖学金资助下,作为洪堡学者在德国Konstanz大学化学系从事博士后研究工作,研究方向为金属和导电聚合物纳米材料的合成、表征及性能研究;
2007年6月~2008年5月,在加拿大Toronto大药理系从事博士后研究工作,主要研究方向为新型DNA检测芯片的研制及其在DNA检测中的应用;
2008年6月~2009年6月,在美国Purdue大学化学系从事博士后研究工作,研究方向为自组装DNA纳米结构的加工及其在生物医学中的应用;
孙旭平博士的主要研究领域包括电分析化学、(纳米)材料化学、高分子化学、超分子自组装、DNA检测及DNA分子纳米技术及其交叉领域;正建立纳米生物实验室,并组建研究小组,欢迎有志从事科学研究并对上述研究领域感兴趣的同学加入本研究团队,在孙旭平博士的带领下,立足国际前沿,在重大疾病、传染病及遗传病的早期电化学诊断与检测及新型纳米生物探针和纳米药物载体的研制等方面开展创新性研究工作。
在攻读博士学位期间,孙旭平博士在纳米材料的湿化学合成及新颖结构的自组装构建方面开展了一系列研究工作,取得了一系列富有创新性的研究成果,并引起了国际同行的关注,如:首次提出了一步加热法制备尺寸可控的树枝状化合物保护的金纳米粒子,该工作在Macromol. Rapid Commun.发表后,受到了美国化学会电子杂志Heart Cut高度评价;首次发展了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯胺纳米带的新方法,该成果在Chem. Commun.发表后,还被该杂志主编作为热点文章推介给读者,同时还受到了国际杂志Chem. Sci.和Materialstoday的高度评价。已经在Angew. Chem., J. Am. Chem. Soc., Anal. Chem., Chem. Mater., Macromolecules, Chem. Commun., Langmuir, Macromol. Rapid. Commun.等国际权威杂志发表研究论文42篇,并获一项美国专利和两项中国专利。主持四川青年基金一项。
荣誉及获奖情况
中科院院长优秀奖(2004)
中科院优秀博士学位论文(2007)
全国百篇优秀博士学位论文(2008)
吉林省高层次创新创业人才(2010)
长春市首批青年科技英才(2012)
主要学术贡献
率先采用低温磷化反应实现了无表面活性剂过渡金属磷化物的快速可控制备,发展三维过渡金属磷化物阵列电极,成功用于高效电催化还原H+析氢,并分析探讨了催化机理;提出基于过渡金属磷化物的电化学pH传感新技术,创新性地利用过渡金属磷化物的H+还原催化特性加速光导电子转移,发展CoP纳米线新型荧光淬灭剂,实现了快速、高效DNA检测;构建了基于富共轭π电子纳米结构的DNA荧光传感界面,首次以生物质为原料合成了杂原子掺杂荧光碳点,利用表面氮原子对Cu2+的富集能力,发展了基于氮掺杂碳点的荧光Cu2+传感新策略。已在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Nucleic Acids Res.、Chem. Mater.、ACS Catal.、ChemSusChem、Anal. Chem.等刊物发表研究论文200余篇,22篇论文入选ESI数据库高被引论文,5篇论文入选ESI数据库热点论文,论文他引6000余次,H-index 48。
1.Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X.* Recent progress in Co-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2015, DOI: 10.1002/adma.201502696.
2.Tian, J.; Cheng, N.; Xing, W.; Sun, X.* Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. Int. Ed. 2015, 54, 5493-5497.
3.Tang, C.; Chen, N.; Pu, Z.; Xing, W.; Sun, X.* NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed.2015, 54, 9351-9355.
4.Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X.* Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
5.Liu, Q.; Tian, J.; Asiri, A. M.; Sun, X.* Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53, 6710-6714.
6.Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Self-supported Cu3P nanowires array as an integrated high-performance 3D cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 2014, 53, 9577-9581.
7.Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X.* A cost-effective 3D hydrogen evolution cathode with exceptionally high catalytic activity: FeP nanowires array as the active phase. Angew. Chem. Int. Ed. 2014,53,12855-12859.
8.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702-5707.
9.Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Hydrothermal treatment of grass: a low cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots that can be used as an effective fluorescent sensing platform for label-free sensitive and selective detection of Cu(II) ions. Adv. Mater. 2012, 24, 2307-2310.
10.Wang, L.; Zhang, Y.; Tian, J.; Li, H.; Sun, X.* Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Nucleic Acids Res. 2011, 39, e37-e42.
11.Sun, X.; Ko, S. H.; Zhang, C.; Ribbe, A. E.; Mao, C.* Surface-mediated DNA self-assembly. J. Am. Chem. Soc.2009, 131, 13248-13249.
12.10. Sun, X.; Dong, S.*; Wang, E.* Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. J. Am. Chem. Soc.2005,127, 13102-13103.
13.11. Sun, X.; Dong, S.*; Wang, E.* Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed.2004,43, 6360-6363.
14.Tian, J.; Li, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.
15.Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for rapid, sensitive, and selective detection of mercury(II) ions. Anal. Chem. 2012, 84, 5351-5357.
16.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal. Chem. 2007, 79, 2588-2592.
17.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Pt nanoparticles: heat-treatment-based preparation and Ru(bpy)32+-mediated formation of aggregates that can form stable film on bare solid electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2006, 78, 6674-6677.
18.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Method for effective immobilization of Ru(bpy)32+ on electrode surface toward solid-state electrochemiluminescene detection. Anal. Chem. 2005, 77, 8166-8169.
19.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5, 145-149.
20.Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.*; Luo, Y.* Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065-4069.
21.Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X.* Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014, 4, 2658-2661.
22.Tian, J.; Li, H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Photo-assisted preparation of Cobalt Phosphate/graphene oxide composites: a novel oxygen-evolving catalyst with high efficiency. Small 2013, 9, 2709-2714.
23.Li, H.; Zhang, Y.; Luo, Y.; Sun, X.* Nano-C60: a novel, effective fluorescent sensing platform for biomolecular detection. Small 2011, 7, 1562-1568.
24.Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X.* CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 2014, 26, 4326-4329.
25.Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* Interconnected Co-entrapped, N-doped carbon nanotube film as active hydrogen evolution cathode over the whole pH range.ChemSusChem 2015, 8, 1850-1855.
26.Li, Q.; Cui, W.; Tian, J.; Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. ChemSusChem 2015, 15, 2487-2491.
27.Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X.* Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 2014, 7, 2125-2130.
28.Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X.* Ni2P nanoparticle films supported on a Ti plate asan efficient hydrogen evolution cathode. Nanoscale2014, 6, 11031-11034.
29.Xing, Z.; Tian, J.; Liu, Q.; Asiri, A. M.; Jiang, P.; Sun, X.* Holey graphene nanosheets: large-scale rapid preparation and their application toward high-effective water cleaning. Nanoscale 2014, 6, 11659-11663.
30.Jiang, P.; Liu, Q.; Sun, X.* NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale2014, 6, 13440-13445 (selected as a Hot Article by Editor's choice).
31.Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921-8924.
32.Tian, J.; Liu, Q.;Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.*Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604-11609.
33.Li, H.; Zhai, J.; Sun, X.* Nano-C60 as a novel, effective fluorescent sensing platform for mercury(II) ion detection at critical sensitivity and selectivity. Nanoscale 2011, 3, 2155-2157.
34.Liu, S.; Wang, L.; Luo, Y.; Tian, J.; Li, H.; Sun, X.* Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale 2011, 3, 967-969.
35.Cheng, N.; Liu, Q.; Tian, J.; Xue, Y.; Asiri, A. M.; Jiang, H.; He, Y.*; Sun, X.* Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 2015, 51, 1616-1619.
36.Cui, W.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Activated carbon nanotubes: a high-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2014, 50, 9340-9342.
37.Li, H.; Tian, J.; Wang, L.; Zhang, Y.; Sun, X.* Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun. 2011, 47, 961-963.
38.Li, H.; Sun, X.* Fluorescence-enhanced nucleic acid detection: using coordination polymer colloids as a sensing platform. Chem. Commun. 2011, 47, 2625-2627.
39.Zhang, Y.; Sun, X.* A novel fluorescent aptasensor for thrombin detection: using poly(m-phenylenediamine) rods as an effective sensing platform. Chem. Commun. 2011, 47, 3927-3929.
40.Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 2012, 2, 8775-8777. (top 10 accessed articles)
41.Tian, J.; Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Sun, X.*; He, Y.* Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: synergies of the metal center and organic linker. Biosens. Bioelectron. 2015, 71, 1-6.
42.Xing, Z.; Tian, J.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.* Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens. Bioelectron. 2014, 52, 452-457.
43.Liu, S.; Tian, J.; Wang, L.; Luo, Y.; Lu, W.; Sun, X.* Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 2011, 26, 4491-4496.
44.Zhang, Y.; Liu, S.; Sun, X.* Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection. Biosens. Bioelectron. 2011, 26, 3876-3880.
45.Li, H.; Zhai, J.; Tian, J.; Luo, Y.; Sun, X.* Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 2011, 26, 4656-4660.
46.Lu, W.; Luo, Y.; Chang, G.; Sun, X.* Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron. 2011, 26, 4791-4797. (most read articles)
47.Li, H.; Sun, X.* Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch. Biosens. Bioelectron. 2011, 27, 167-171.
48.Zhang, Y.; Chang, G.; Liu, S.; Lu, W.; Tian, J.; Sun, X.* Green preparation of Au nanoplates and their application for glucose sensing. Biosens. Bioelectron. 2011, 28, 344-348.
49.Liu, S.; Tian, J.; Wang, L.; Sun, X.* A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 2011, 49, 3158-3164.
50.Liu, S.; Tian, J.; Wang, L.; Li, H.;Zhang, Y.; Sun, X.* Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 2010, 43, 10078-10083.
孙旭平博士获2004年中科院院长奖学金优秀奖;
获2007年中科院优秀博士学位论文;
并获2008年全国百篇优秀博士学位论文(论文题目为:《纳米材料的湿化学合成及新颖结构的自组装构建》)。