完全平方公式

更新时间:2024-05-24 18:25

完全平方公式是一个数学名词,即(a+b)2=a2+2ab+b2、(a-b)2=a2-2ab+b2。

定义

两数和的平方,等于它们的平方和加上它们的积的2倍。

(a+b)2=a2﹢2ab+b2

两数差的平方,等于它们的平方和减去它们的积的2倍。

﹙a-b﹚2=a2﹣2ab+b2

该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(系数的理解等)。

学习方法

公式特征(重点)

学会用文字概述公式的含义:

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

这两个公式的结构特征:

公式口诀

首平方,尾平方,首尾相乘放中间。

或首平方,尾平方,两数二倍在中央。

也可以是:首平方,尾平方,积的二倍放中央。

同号加、异号减,负号添在异号前。(可以背下来)

(注意:后面一定是加号)

公式变形

变形的方法

(一)、变符号:

例1:运用完全平方公式计算:

(1)

(2)

分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。

解答:

(1)原式=

(2)原式=

(二)、变项数:

例2:计算:

分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为,直接套用公式计算。

解答:原式=

(三)、变结构

例3:运用公式计算:

(1)

(2)

(3)

分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了。

解答:

(1)原式=

(2)原式=

(3)原式=

应用

例4:计算:

(1)

(2)(100.1)2

分析:本例中的999接近1000,100.1接近100,故可化成两个数的和或差,从而运用完全平方公式计算。

解答:

(1)原式=

(2)原式=

公式的变形:熟悉完全平方公式的变形式,是相关整体代换求知值的关键。

例5:已知实数a、b满足(a+b)2=10,ab=1。

求下列各式的值:

(1);

(2)

分析:此例是典型的整式求值问题,若按常规思维把a、b的值分别求出来,非常困难;仔细探究易把这些条件同完全平方公式结合起来,运用完全平方公式的变形式很容易找到解决问题的途径。

解答:

(1)原式=

(2)原式=

注意事项

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}