更新时间:2022-08-25 11:52
用实验分析方法确定物体(例如工程构件)在受力情况下的应力状态的学科。
实验应力分析是用实验分析方法确定物体(例如工程构件)在受力情况下的应力状态的学科。
在固体力学的各分支(如弹性力学、塑性力学、断裂力学、复合材料力学等)中,都常用实验应力分析方法研究应力分布基本规律,为发展新理论提供依据。
在工程领域内,它又是提高设计质量和进行失效分析的一种重要手段。有效地应用实验应力分析方法,不仅能提高工程结构的安全度和可靠性,还能减少材料捎耗、降低生产成本和节约能源。
早在17世纪,人们将力学原理应用于工程问题时,就曾用简单的实验手段测定材料的力学性能,并阐明工程结构的某些力学特征。19世纪后期,虽然出现了较为灵敏的机械式应变测量装置,但在工程实用上,仍受到很大限制。20世纪30年代,粘贴式电阻应变计的出现,光弹性实验技术的进一步完善,以及其他实验技术的发展,使实验应力分析蓬勃发展起来,并得到广泛应用。
实验应力分析方法目前已有电学的、光学的、声学的以及其他方法。
有电阻、电容、电感等多种方法,而以电阻应变计测量技术应用较为普遍,效果较好。
①电阻应变计法
电阻应变计是一种能将构件上的尺寸变化转换成电阻变化的变换器,一般由敏感栅、引线、粘结剂、基底和盖层构成。将它安装在构件表面。构件受载荷作用后,表面产生微小变形,敏感栅随之变形,致使应变计产生电阻变化,其变化率和应变计所在处构件的应变成正比 。测出电阻变化,即可按公式算出该处构件表面的应变,并算出相应的应力。依敏感栅材料不同,电阻应变计分金属电阻应变计和半导体应变计两大类。另外还有薄膜应变计、压电场效应应变计和各种不同用途的应变计,如温度自补偿应变计、大应变计、应力计、测量残余应力的应变化等。
②电容应变计法
电容应变计是一种能将构件上的尺寸变化转换成电容变化的变换器。试件变形时,两电容极片间距随之变动,引起电容变化。测出电容变化率,按公式可算出试件的应变 。电容 应 变计有弓形 、平板式和杆式等类型,多用于发电厂的管道、设备或核能设备的长期高温应变测量,监视裂纹的形成和发展,以及对航空航天构件材料进行高温性能测试等。
此法发展较快,方式较多,逐渐形成光测力学。经典的光弹性实验技术已从二维、三维模型实验(如光弹性法、光弹性应力冻结法)发展成为能用于工业现场测量的光弹性贴片法,用来解决扭转和轴对称问题的光弹性散光法,研究应力波传播和热应力的动态光弹性法和热光弹性法,进行弹-塑性应力分析的光塑性法 , 以及研究复合材料力学的正交异性光弹性法 。除了上述 经典方法外 ,还有云纹法、云纹干涉法、全息干涉法、散斑干涉法、全息光弹性法、焦散线法等。此外还有80年代发展起来的光纤传感技术和数字图像处理技术等。
①光弹性法
运用光学原理研究弹性力学问题的一种实验应力分析方法。某些各向同性透明的非晶体高分子材料受载荷作用时,呈现光学各向异性,使一束垂直入射偏振光沿材料中的两主应力方向分解成振动方向互相垂直、传播速度不同的两束平面偏振光;卸载后,又恢复光学各向同性。这就是所谓的暂时双折射效应。用具有这种效应的透明塑料按一定比例制成零构件模型,置于偏振光场中,施加一定的载荷,模型上便产生干涉条纹。通过计算,就能确定模型受载时各部位的应力大小和方向。此法对应力集中区和三维内部应力问题的求解特别有效。
②云纹法
通过测定云纹并对其进行分析以确定试件的位移场或应变场的一种实验分析法。其原理是,当栅板和栅片重叠时,因栅片牢固地粘贴在试件表面而随之变形,遂使栅板和栅片上的栅线因几何干涉而产生条纹即云纹。可通过云纹测定物体表面的等高线,以及板壳的挠度分布等。
③云纹干涉法
几何云纹法与光学干涉法相结合的一种实验分析法。将高密度衍射光栅精确复制在物体表面,并用激光束照射该光栅,便可通过光栅衍射波干涉形成的条纹图,获得物体表面的变形信息 。此法灵敏 度高 ,条纹对比度好;能进行全场分析,实时观测,量程几乎不受限制。
④全息干涉法
利用全息照相获得物体变形前后的光波波阵面相互干涉所形成的干涉条纹图进行物体变形分析的一种方法。全息照相是一种不用透镜而能记录和再现被摄物体的三维图像的照相方法。它能把来自物体的光波波阵面的振幅和相位信息以干涉条纹形式记录下来,又能在需要时再现出来,以观察到物体的三维图像。全息干涉法的主要内容是研究条纹图的形成、条纹的定位以及对条纹图的解释。对于具有漫反射表面的不透明物体,条纹图表示物体沿观察方向的等位移线;对于透明的光弹性模型(如有机玻璃),则表示模型中主应力之和等于常数的等和线。常用的全息干涉法有双曝光法、即时法和均时法。
⑤散斑干涉法
精确检测物体表面各点位移的光学测试法。激光照射在漫反射物体表面时,由反射光波干涉形成的散斑随物体变形或位移而变化。采用适当装置,通过双曝光法把变形前后的散斑记录在一张全息底片上,经显影定影后便可获得存储物体表面各点位移信息的散斑图。用激光照射散斑图,就显出散斑干涉条纹。在进行光学傅里叶变换信息处理后,便可分析出位移信息。
⑥焦散线法
利用焦散线测量应变(或应力)奇异场力学参数的一种光学实验法。当一束光垂直照射在一块受载的带有边缘裂纹透明薄板试件的局部高应变场区域时,由于域内各处厚度的变化十分悬殊,使透过的光线发生强烈偏折和汇聚,在试件与像屏间的空间形成一个明亮的曲面,称为焦散面。若用一个半透明屏幕切割此焦散面,就可看到一条明亮的曲线,即焦散线。通过光学和力学分析,可将焦散线的几何参数与奇异场的力学参数间的关系建立起来,从而通过测量焦散线的几何形状,可求出有关的力学量。
⑦光纤传感技术
用光纤作“传”和“感”的元件,当光通过光纤时,光的某一特性(如光强、相位、波长、偏振等)受到被测物理量的影响而发生变化,利用这一变化即可测得诸如声压、电场、磁场、位移、加速度、应变、温度等。光纤传感器的独特优点是:光纤是一种绝缘介质,不受电磁干扰,能耐高温高压,能在腐蚀和易燃、易爆等恶劣环境下工作;光纤灵敏度高,能探射极弱的信号和微小的信号变化;可做成便于应用的任何形状;光纤作为传输介质,损耗低 ,可作远距离遥测和遥控;能构成对各种物理量(如声、电 、磁、温度、转动等)微扰敏感的器件。因此,光纤传感器在传感器领域内占有重要地位。
⑧数字图像处理技术
利用电子计算机对图像信息进行采集、处理和分析的图像信息处理技术。在实验力学领域内,主要用来分析处理光测力学中光弹性法、云纹干涉法、全息干涉法、散斑干涉法等的光学干涉条纹信息,获取全面而有效的实验数据,实现光测力学的图像信息采集自动化和数据分析程序化。
有声弹性法、声发射技术和声全息法等。
①声弹性法
利用超声剪切波的双折射效应测量应力的一种方法。超声波在有应力的介质中传播时,其剪切波沿两主应力方向发生偏振,两偏振波以不同速度传播。实验和理论分析得到应力-光学定律 : 沿主应力方向的两个超声剪切波的速度差与两主应力差成正比。该比例系数称声弹性系数,与材料的弹性常数有关。用此法可测量非透明材料的内部应力,并可测量焊接件的残余应力。
②声发射技术
构件在受力过程中产生变形或裂纹时 ,以弹性波形式释放出应变能的现象称为声发射;利用接收的声发射信号,对构件进行动态无损检测的技术称为声发射技术。此技术可用来检测裂纹和研究腐蚀断裂过程,以及监视构件的疲劳裂纹扩展等;还可用来评价构件的完整性,判断结构的危险程度。
③声全息法
20世纪60年代发展起来的成像技术。其原理和全息照相相同,即利用波的干涉原理记录物波的振幅和相位,并利用衍射原理再现物体的像。它的不同处是用超声波代替光波。此法的成像分辨率高,用于无损检验,可显示试件内部缺陷的形状和大小。
常见的有脆性涂层法、X射线应力测定法、比拟法等。
①脆性涂层法
把特殊的涂料喷涂在工程构件表面,以确定主应力方向和估计主应力大小的一种全场实验方法。涂料喷涂到构件表面后,经过处理,就在构件表面结成脆性层。当此构件由于加载而产生的应变在某点达到一定的临界值时,该点涂层就出现一条与主应力方向垂直的裂纹。连接同一载荷下所有裂纹的端点,其连线上各点是有相等的应力值,称为等应力线。通过逐级加载,可得几乎遍布整个涂层表面的裂纹图和对应于不同载荷的等应力线,从而可直接观察到构件表面各处主应力大小和方向的分布状况。此法主要用来测出最大应力区和主应力方向,作为电阻应变计测量技术的辅助方法。
②X射线应力测定法
利用X射线穿透金属晶格时发生衍射的原理,测量衍射角的变化并通过布拉格公式确定晶格的变化,从而算出金属构件表面应力的一种实验方法。此法可无损地测量构件中的应力或残余应力,特别适于测量薄层和裂纹尖端的应力分布,是检验产品质量,研究材料强度,选用较佳工艺的一种重要手段。
③比拟法
根据两种物理现象之间的比拟关系,通过一种物理现象的观测试验,研究另一种物理现象的方法。如果两种物理现象中存在以形式相同的 数 学方程 描 述的物理量,它们之间便存在比拟关系,就可用一种较易测试的物理现象模拟另一种难以测试的物理现象,从而使试验工作大为简化。在实验应力分析领域中,常用的有薄膜比拟、电比拟、电阻网络比拟、沙堆比拟。