巴耳末系

更新时间:2024-06-06 13:48

巴耳末系或巴耳末线是原子物理学氢原子六个发射谱线系列之一的名称。

简介

巴耳末系或巴耳末线是原子物理学氢原子六个发射谱线系列之一的名称。

巴耳末系的计算可以使用约翰·巴耳末在1885年发现的巴耳末公式- 一个经验式。 来自氢原子所发射的光谱线在可见光有4个波长:410纳米、434纳米、486纳米和656纳米。它们是吸收光子能量的电子进入受激态后,返回主量子数n等于2的量子状态时释放出的谱线。

回顾

巴耳末系的谱线是电子从主量子数或径矢量子数n>3的能级返回n等于2时释放出的。传送的名称是利用希腊字母依序来命名:从n=3至n=2称为H-α,n=4至n=2称为H-β,n=5至n=2称为H-γ,n=6至n=2称为H-δ。当个系列的电磁波频谱在可见光部分第一次被看见时,就被称为H-α、H-β、H-γ和H-δ,其中的H就代表氢原子。

虽然在1885年之前物理学家就知道原子会辐射,但她们缺乏工具来准确的预测谱线应该出现的位置(波长)。巴耳末公式能很精确的预测氢在可见光的4条吸收或发射的谱线,启发了里德伯公式成为普遍化的形式,并带领物理学家发现在可见光之外的来曼系帕申系、布拉开线系:那些被预测的氢吸收和发射谱线。

最熟悉的红色H-α氢气谱线,是n= 3的壳层和n= 2的壳层之间转移的巴耳末系谱线,是在宇宙中最耀眼的颜色。在耀眼的发射或电离的星云,像是猎户座大星云,都会发现它对光谱的贡献,有时在恒星形成的HII区也能发现。在真实颜色的照片中,这些星云因为氢发射的巴耳末系组合,明显的发散出桃红色的颜色。

稍后,发现在非常高分辨率的观察下,这些氢的谱线都是非常靠近的双线,这种分裂的谱线称为精细结构。同时也发现,被激发的电子在巴耳末系从n=2跃迁至n>6的轨道时,即使是紫外线的谱线也是如此。

在天文学中的角色

巴耳末系在天文学中特别有用,因为巴耳末线出现在许多天体的现象中。而且宇宙中的丰盈度,使它在被看见时,总是比共同存在的其他元素谱线更为显而易见。

在恒星的光谱类型,主要是由表面的温度决定,是建立在光谱线的相对强度上,而巴耳末系在这方面是非常重要的。其它可以取决于进一步光谱分系的特征还包括表面重力(与物体的大小有关)和成分(结构)。 . 因为在各种不同的天体中巴耳末系都是可以观察到的谱线,它们常被利用多普勒位移来测量视线速度。这在天文学所有的领域上都很有用,像是测量联星、系外行星、中子星黑洞致密天体(测量围绕着的吸积盘中氢的运动)、确认有着相似运动天体的起源和是否是同一群天体(移动星群星团星系团、和来自碰撞的碎片)、测量星系或类星体的距离(精确的红移)、或是经由光谱分析辨识出不熟悉的天体。

依据被观测对象的本质,巴耳末线可以出现在吸收谱线发射谱线中。在恒星,巴耳末系通常是吸收线,而且在表面温度10,000K(光谱类型A)的恒星最为强烈(明显)。在许多的不规则星系螺旋星系AGN、HII区、和行星状星云,巴耳末线是发射线。

的混合。

相关条目

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}