更新时间:2022-08-25 16:51
庞加莱-林德斯泰特方法(英语:Poincaré–Lindstedt method)是摄动理论中一种当正则摄动法失效时求解常微分方程的近似周期解的方法, 可以在弱非线性振动问题中消除正则摄动法中出现的长期项。
庞加莱-林德斯泰特方法(英语:Poincaré–Lindstedt method)是摄动理论中一种当正则摄动法失效时求解常微分方程的近似周期解的方法, 可以在弱非线性振动问题中消除正则摄动法中出现的长期项。
该方法是以数学家昂利·庞加莱与安德斯·林德斯泰特的名字命名的。
在这例子里,是简单又有“精确解”的问题的精确解,代表由某种系统程序反复地找到的高阶项目修正。因为的值很微小,这些高阶项目修正应该会越来越不重要。
长期变化是时间系列在长时期的非周期变化(参见分解时间系列)。无论何者被查觉是长期变化或是与时间尺度无关:在超越世纪的时间尺度上,长期变化在数百万年的时间尺度下可能是周期变化的一部分。自然界的量往往有周期性和长期变化。当在强调是一种线性的长期变化时,长期变化有时被称为长期趋势或长期漂移。