徐礼华

更新时间:2024-10-11 17:37

徐礼华 ,女 ,安徽潜山人。

人物经历

求学学历

1983年7月毕业于合肥工业大学工民建专业本科,获工学学士学位;

1991年3月毕业于武汉工业大学结构工程专业研究生,获工学硕士学位;

1999年1月毕业于武汉水利电力大学岩土工程专业研究生,获工学博士学位。

1994年在荷兰王国IHS进修“城市规划与管理”,获结业证书。

任职经历

1983.07-1988.08 安徽省潜山县建筑设计室助理工程师;

1988.09-1991.03 武汉工业大学结构工程专业硕士学位研究生;

1991.03-1993.09 武汉测绘科技大学工测系讲师;

1993.11-1998.11 武汉测绘科技大学城市建设学院副教授;

1998.12-2000.07 武汉测绘科技大学城市建设学院教授、副院长(主持工作);

2000.08至今 武汉大学土木建筑工程学院教授(博士生导师)、副院长、院长。

九三学社第十五届中央委员会委员 第十四届全国政协委员

任免信息

2017年12日至13日,九三学社湖北省第七次代表大会在汉召开。徐礼华当选副主任委员。

2022年4月18日至19日,九三学社湖北省第八次代表大会在武汉召开,徐礼华当选为九三学社湖北省第八届委员会副主任委员。

学术兼职

担任2018-2022教育部高等学校土木工程专业教学指导分委员会委员、中国土木工程学会教育工作委员会委员、中国地震学会可恢复功能防震体系专业委员会委员、中国灾害防御协会城乡韧性与防灾减灾专业委员会委员、湖北省土木建筑学会副理事长、《地震工程与工程振动》副主编、美国混凝土协会ACI E-Member、国际标准化组织“混凝土技术委员会(ISO/TC71)”委员、国际砌体结构协会理事。

研究领域

纤维混凝土材料本构关系、高性能混凝土结构、工程结构抗震及加固、装配式结构基本理论及应用。

出版图书

科研成果

近5年主持国家自然科学基金重点项目1项及面上项目4项、国家“863计划”子项目1项、国家“十二五”支撑计划课题1项、国家“十三五”重点研发计划项目子课题1项、教育部博士点基金项目1项、湖北省自然科学基金重点项目1项、高层建筑设计项目10余项。在《建筑结构学报》、《土木工程学报》、《工程力学》、《硅酸盐学报》、ASCE《Journal of Materials in Civil Engineering》、ASCE《Journal of Engineering Mechanics》、《Composite Structures》、《Construction and Building Materials》、《ACI Materials Journal》等主流期刊发表学术论文141篇;出版著作2部,主编行业标准《纤维片材加固砌体结构技术规范》、参编行业标准3部;获湖北省科技进步奖一等奖(排名第一)、教育部科技进步一等奖2项(排名第一、三)、发明专利8项,享受国务院政府特殊津贴。

教学成果

主讲《混凝土结构基本原理》、《混凝土结构及砌体结构设计》、《建筑结构抗震设计》、《高等钢筋混凝土结构》等课程。担任土木工程国家特色专业、“卓越工程师教育培养计划”专业和国家专业综合改革试点的负责人,《混凝土结构与砌体结构》国家及湖北省精品资源共享课程负责人,出版教材6部,以第一完成人获国家级教学成果奖二等奖、湖北省教学成果奖一等奖、武汉大学教学成果奖特等奖,获宝钢教育基金优秀教师奖、武汉大学第三届杰出教学贡献校长奖、湖北省高校先进女职工、武汉大学教学名师称号。

近期论文

[1]Cai, H., Xu, L., Chi, Y., Yan, Y., Yu, C., He, C. Seismic performance ofrectangular ultra-high performance concrete filled steel tube (UHPCFST)columns[J]. Composite Structures, 2021, 259: 113242.

[2]Lu, Q., Xu, L., Chi, Y., Deng, F., Yu, M., Hu, X. A novel analysis-orientedtheoretical model for steel tube confined ultra-high performance concrete[J].Composite Structures, 2021, 264: 113713.

[3]Deng, F., Xu, L., Chi, Y., Wu, F., Chen, Q. Effect of steel-polypropylenehybrid fiber and coarse aggregate inclusion on the stress–strain behavior ofultra-high performance concrete under uniaxial compression[J]. CompositeStructures, 2020, 252: 112685.

[4]Xu, L., Wu, F., Chi, Y., Cheng, P., Zeng, Y., Chen, Q. Effects of coarseaggregate and steel fibre contents on mechanical properties of high performanceconcrete[J]. Construction and Building Materials, 2019, 206: 97-110.

[5]Huang, L., Ye, H., Chu, S., Xu, L., Chi, Y. Stochastic damage model for bond stress-sliprelationship of reinforcing bar embedded in concrete[J]. EngineeringStructures, 2019, 194: 11-25.

[6]Huang, L., Chi, Y., Xu, L., Deng, F. A thermodynamics-based damage-plasticitymodel for bond stress-slip relationship of steel reinforcement embedded infiber reinforced concrete[J]. Engineering Structures, 2019, 180: 762-778.

[7]Yan, Y., Xu, L., Li, B., Chi, Y., Yu, M., Zhou, K., Song, Y. Axial behavior ofultra-high performance concrete (UHPC) filled stocky steel tubes with squaresections[J]. Journal of Constructional Steel Research, 2019, 158: 417-428.

[8]Xu, L., Wei, C., Li, B. Damage Evolution of Steel-Polypropylene Hybrid FiberReinforced Concrete: Experimental and Numerical Investigation[J]. Advances inMaterials Science and Engineering, 2018, 2018.

[9]Xu, L., Li, B., Ding, X., Chi, Y., Li, C., Huang, B., Shi, Y. Experimentalinvestigation on damage behavior of polypropylene fiber reinforced concreteunder compression[J]. International Journal of Concrete Structures andMaterials, 2018, 12(1): 1-20.

[10]Xu, L., Zhou, P., Chi, Y., Huang, L., Ye, J., Yu, M. Performance of thehigh-strength self-stressing and self-compacting concrete-filled steel tubecolumns subjected to the uniaxial compression[J]. International Journal ofCivil Engineering, 2018, 16(9): 1069-1083.

[11] Xu, L., Li, B.,Chi, Y., Li, C., Huang, B., Shi, Y. Stress-strain relation ofsteel-polypropylene-blended fiber-reinforced concrete under uniaxial cycliccompression[J]. Advances in Materials Science and Engineering, 2018, 2018.

[12]Deng, F., Ding, X., Chi, Y., Xu, L., Wang, L. The pull-out behavior of straightand hooked-end steel fiber from hybrid fiber reinforced cementitious composite:Experimental study and analytical modelling[J]. Composite Structures, 2018,206: 693-712.

[13]Li, B., Chi, Y., Xu, L., Li, C., Shi, Y. Cyclic tensile behavior of SFRC:Experimental research and analytical model[J]. Construction and BuildingMaterials, 2018, 190: 1236-1250.

[14]Li, B., Xu, L., Shi, Y., Chi, Y., Liu, Q., Li, C. Effects of fiber type, volumefraction and aspect ratio on the flexural and acoustic emission behaviors ofsteel fiber reinforced concrete[J]. Construction and Building Materials, 2018,181: 474-486.

[15]Li, B., Chi, Y., Xu, L., Shi, Y., Li, C. Experimental investigation on theflexural behavior of steel-polypropylene hybrid fiber reinforced concrete[J].Construction and Building Materials, 2018, 191: 80-94.

[16] Yu, M., Pei, X.,Xu, L., Ye, J. A unified formula for calculating bending capacity of solid andhollow concrete-filled steel tubes under normal and elevated temperature[J].Journal of Constructional Steel Research, 2018, 141: 216-225.

[17] Chi, Y., Yu, M.,Huang, L., Xu, L. Finite element modeling of steel-polypropylene hybrid fiberreinforced concrete using modified concrete damaged plasticity[J]. EngineeringStructures, 2017, 148: 23-35.

[18] Zhang, S., Yang,D., Sheng, Y., Garrity, S. W., Xu, L. Numerical modelling of FRP-reinforcedmasonry walls under in-plane seismic loading[J]. Construction and buildingmaterials, 2017, 134: 649-663.

[19]Xu, L., Deng, F., Chi, Y. Nano-mechanical behavior of the interfacialtransition zone between steel-polypropylene fiber and cement paste[J].Construction and Building Materials, 2017, 145: 619-638.

[20]Li, B., Xu, L., Chi, Y., Huang, B., Li, C. Experimental investigation on thestress-strain behavior of steel fiber reinforced concrete subjected to uniaxialcyclic compression[J]. Construction and Building Materials, 2017, 140: 109-118.

[21]Huang, L., Chi, Y., Xu, L., Chen, P., Zhang, A. Local bond performance of rebarembedded in steel-polypropylene hybrid fiber reinforced concrete undermonotonic and cyclic loading[J]. Construction and Building Materials, 2016,103: 77-92.

[22] Xu, L., Huang, L.,Chi, Y., Mei, G. Tensile behavior of steel-polypropylene hybridfiber-reinforced concrete[J]. ACI Materials Journal, 2016, 113(2): 219-229.

[23]Huang, L., Xu, L., Chi, Y., Xu, H. Experimental investigation on the seismicperformance of steel–polypropylene hybrid fiber reinforced concrete columns[J].Construction and Building Materials, 2015, 87: 16-27.

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}