更新时间:2022-08-25 16:36
截面数据(cross-section data)是指在同一时间(时期或时点)截面上反映一个总体的一批(或全部)个体的同一特征变量的观测值,是样本数据中的常见类型之一。例如,工业普查数据、人口普查数据、家庭收入调查数据。在数学,计量经济学中应用广泛。
经济计量学专用名词。横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。与时序数据相比较,其区别在与组成数据列的各个数据的排列标准不同,时序数据是按时间顺序排列的,横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。与时间数据完全一样,横截面数据的统计口径和计算方法(包括价值量的计算方法)也应当是可比的。
在分析横截面数据时,应主要注意两个问题:
对异方差的检验大多集中于线性模型情形,检验方法很多。主要的检验异方差性的方法有:图示检验法、等级相关系数检验法、戈里瑟检验(Glejser Test)、巴特列特检验、布鲁奇-培根检验(The Breusch-Pagan Test)、戈德菲尔德-匡特检验(The Goldfeld-Quandt Test)、沃特检验(Wald Test)、拉格朗日乘数检验、似然比检验、怀特大样本检验等。这些检验方法在性能上各有优劣,互为补充,在具体操作时宜结合使用,相互验证,不应单凭个别检验结论做出歧视性或排他性的断言。
横截面数据是指在某一时点收集的不同对象的数据。它对应同一时点上不同空间(对象)所组成的一维数据集合,研究的是某一时点上的某种经济现象,突出空间 (对象)的差异。横截面数据的突出特点就是离散性高。横截面数据体现的是个体的个性,突出个体的差异,通常横截面数据表现的是无规律的而非真正的随机变化。即计量经济学中所谓的“无法观测的异质性”。