更新时间:2023-05-29 15:35
接口协议(Interface protocol)指的是需要进行信息交换的接口间需要遵从的通信方式和要求。接口协议的种类非常多。接口协议不仅要规定物理层的通信,还需要规定语法层和语义层的要求。
USB3.0、Type-C、HDMI 之类的词,大体分为两类。
一类是接口标准,定义整个数据传输的方式,包括编码、驱动、接口实现等等。USB、HDMI、Thunderbolt等都是接口标准,其中可以再分成两类:纯视频、音频用的接口标准。包括HDMI、DisplayPort,还有上古的 VGA、DVI 等。还有就是通用数据接口,包括USB 和 Thunderbolt。每种接口都有自己的N个版本,比如 USB2.0,USB3.0,Display1.2之类的。
另一类是具体的接口实现,比如 USB就有 type-A、type-B、type-C,DisplayPort 包括 DisplayPort 和 MiniDisplayPort等等,不同的接口兼容不同版本的协议。但有些接口兼容,两种标准,比如 type-c 支持 USB3.1 和 Thunderbolt3,当然,也可以说 Thunderbolt3 兼容 USB3.1。
是大多数键盘、鼠标与PC机通讯的标准协议。其中鼠标对PC机的通讯更为简单,只是传输数据的内容不一样而已。
是EPC 中间件与阅读器模块和客户应用程序之间的接口协议. 该协议定义了客户可以如何过虑和整合来自多个阅读器的EPC标签。
是一种在局域网上的程序可以使用的应用程序编程接口(API)。
是指GSM 的Um接口上信令及其传输所应遵守的规定。
硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与控制器之间的连接速度,在整个系统中,硬盘接口的性能高低对磁盘阵列整体性能有直接的影响,因此了解一款磁盘阵列的硬盘接口往往是衡量这款产品的关键指标之一。存储系统中普遍应用的硬盘接口主要包括SATA、 SCSI、SAS和FC等,此外ATA硬盘在SATA硬盘出现前也在一些低端存储系统里被广泛使用。
每种接口协议拥有不同的技术规范,具备不同的传输速度,其存取效能的差异较大,所面对的实际应用和目标市场也各不相同。同时,各接口协议所处于的技术生命阶段也各不相同,有些已经没落并面临淘汰,有些则前景光明,但发展尚未成熟。那么经常困扰客户的则是如何选择合适类型阵列,既可以满足应用的性能要求,又可以降低整体投资成本。我们将带您了解常见的硬盘接口技术的差异与特点,从而帮助您选择适合自身需求的最佳方案。
ATA,在并行中没落
ATA (AT Attachment)接口标准是IDE(Integrated DriveElectronics)硬盘的特定接口标准。自问世以来,一直以其价廉、稳定性好、标准化程度高等特点,深得广大中低端用户的喜爱,甚至在某些高端应用领域,如服务器应用中也有一定的市场。ATA规格包括了 ATA/ATAPI-6 其中Ultra ATA 100兼容以前的ATA版本,在40-pin的连接器中使用标准的16位并行数据总线和16个控制信号。
最早的接口协议都是并行ATA(Paralle ATA)接口协议。PATA接口一般使用16-bit数据总线,每次总线处理时传送2个字节。PATA接口一般是100Mbytes/sec带宽,数据总线必须锁定在50MHz,为了减小滤波设计的复杂性,PATA使用Ultra总线,通过“双倍数据比率”或者2个边缘(上升沿和下降沿)时钟机制用来进行DMA传输。这样在数据滤波的上升沿和下降沿都采集数据,就降低一半所需要的滤波频率。这样带宽就是:25MHz 时钟频率x 2 双倍时钟频率x16 位/每一个边缘/ 8 位/每个字节= 100 Mbytes/sec。
在过去的20年中,PATA成为ATA硬盘接口的主流技术。但随着CPU时钟频率和内存带宽的不断提升,PATA逐渐显现出不足来。一方面,硬盘制造技术的成熟使ATA硬盘的单位价格逐渐降低,另一方面,由于采用并行总线接口,传输数据和信号的总线是复用的,因此传输速率会受到一定的限制。如果要提高传输的速率,那么传输的数据和信号往往会产生干扰,从而导致错误。
PATA的技术潜力似乎已经走到尽头,在当今的许多大型企业中,PATA现有的传输速率已经逐渐不能满足用户的需求。人们迫切期待一种更可靠、更高效的接口协议来替代PATA,在这种需求的驱使下,串行(Serial)ATA总线接口技术应运而生,直接导致了传统PATA技术的没落。
SATA,在低端徘徊
PATA曾经在低端的存储应用中有过光辉的岁月,但由于自身的技术局限性,逐步被串行总线接口协议(Serial ATA,SATA)所替代。SATA以它串行的数据发送方式得名。在数据传输的过程中,数据线和信号线独立使用,并且传输的时钟频率保持独立,因此同以往的PATA相比,SATA的传输速率可以达到并行的30倍。可以说:SATA技术并不是简单意义上的PATA技术的改进,而是一种全新的总线架构。
从总线结构上,SATA 使用单个路径来传输数据序列或者按照bit来传输,第二条路径返回响应。控制信息用预先定义的位来传输,并且分散在数据中间,以打包的格式用开/关信号脉冲发送,这样就不需要另外的传输线。SATA带宽为16-bit。并行Ultra ATA总线每个时钟频率传输16bit数据,而SATA仅传输1bit,但是串行总线可以更高传输速度来弥补串行传输的损失。SATA将会引入 1500Mbits/sec带宽或者1.5Gbits/sec带宽。由于数据用8b/10b编码,有效的最大传输峰值是150Mbytes/sec。
能够见到的有SATA-1和SATA-2两种标准,对应的传输速度分别是150MB/s和300MB/s。从速度这一点上,SATA已经远远把 PATA硬盘甩到了后面。其次,从数据传输角度上,SATA比PATA抗干扰能力更强。从SATA委员会公布的资料来看,到2007年,在第三代SATA技术中,个人电脑存储系统将具有最高达600MB/s的数据带宽。此外,串口的数据线由于只采用了四针结构,因此相比较起并口安装起来更加便捷,更有利于缩减机箱内的线缆,有利散热。
虽然厂商普遍宣称SATA支持热插拔,但实际上,SATA在硬盘损坏的时候,不能像SCSI/SAS和FC硬盘一样,显示具体损坏的硬盘,这样热插拔功能实际上形同虚设。同时,尽管SATA在诸多性能上远远优越于PATA,甚至在某些单线程任务的测试中,表现出了不输于SCSI的性能,然而它的机械底盘仍然为低端应用设计的,在面对大数据[注]吞吐量或者多线程的传输任务时,相比SCSI硬盘,仍然显得力不从心。除了速度之外,在多线程数据读取时,硬盘磁头频繁地来回摆动,使硬盘过热是SATA需要克服的缺陷。正是因为这些技术上致命的缺陷,导致SATA还只能在低端的存储应用中徘徊。
SCSI,中端存储的主流之选
SCSI(Small Computer System Interface)是一种专门为小型计算机系统设计的存储单元接口模式,通常用于服务器承担关键业务的较大的存储负载,价格也较贵。SCSI计算机可以发送命令到一个SCSI设备,磁盘可以移动驱动臂定位磁头,在磁盘介质和缓存中传递数据,整个过程在后台执行。这样可以同时发送多个命令同时操作,适合大负载的I/O应用。在磁盘阵列上的整体性能也大大高于基于ATA硬盘的阵列。
SCSI规范发展已经是第六代技术了,从刚创建时候的SCSI(8bit)到Ultra 320 SCSI,速度从1.2MB/s到320MB/s有了质的飞跃。主流SCSI硬盘都采用了Ultra 320 SCSI接口,能提供320MB/s的接口传输速度。SCSI硬盘也有专门支持热拔插技术的SCA2接口(80-pin),与SCSI背板配合使用,就可以轻松实现硬盘的热拔插。在工作组和部门级服务器中,热插拔功能几乎是必备的。
相比ATA硬盘,SCSI体现出了更适合中、高端存储应用的技术优势:
首先SCSI相对于ATA硬盘的接口支持数量更多。一般而言,ATA硬盘采用IDE插槽与系统连接,而每IDE插槽即占用一个IRQ(中断号),而每两个 IDE设备就要占用一个IDE能道,虽然附加IDE控制卡等方式可以增加所支持的IDE设备数量,但总共可连接的IDE设备数最多不能超过15个。而 SCSI的所有设备只占用一个中断号(IRQ),因此它支持的磁盘扩容量要比ATA更为巨大。这个优点对于普通用户而言并不具备太大的吸引力,但对于企业存储应用则显得意义非凡,某些企业需要近乎无节制地扩充磁盘系统容量,以满足网络存储用户的需求。
其次:SCSI的带宽很宽,Ultra 320 SCSI能支持的最大总线速度为320MB/s,虽然这只是理论值而已,但在实际数据传输率方面,最快 ATA/SATA的硬盘相比SCSI硬盘无论在稳定性和传输速率上,都有一定的差距。不过如果单纯从速度的角度来看,用户未必需要选择SCSI硬盘,RAID技术可以更加有效地提高磁盘的传输速度。
最后、SCSI硬盘CPU占用率低、并行处理能力强。在ATA和SATA硬盘虽然也能实现多用户同时存取,但当并行处理人数超过一定数量后,ATA/SATA硬盘就会暴露出很大的I/O缺陷,传输速率大幅下降。同时,硬盘磁头的来回摆动,也造成硬盘发热不稳定的现象。
对于SCSI而言,它有独立的芯片负责数据处理,当CPU将指令传输给SCSI后,随即去处理后续指令,其它的相关工作就交给SCSI控制芯片来处理;当 SCSI“处理器”处理完毕后,再次发送控制信息给CPU,CPU再接着进行后续工作,因此不难想像SCSI系统对CPU的占用率很低,而且SCSI硬盘允许一个用户对其进行数据传输的同时,另一位用户同时对其进行数据查找,这就是SCSI硬盘并行处理能力的体现。
SCSI硬盘较贵,但是品质性能更高,其独特的技术优势保障SCSI一直在中端存储市场占据中流砥柱的地位。普通的ATA硬盘转速是5400或者7200RPM;SCSI 硬盘是10000或者15000 RPM,SCSI硬盘的质保期可以达到5年,平均无故障时间达到1,200,000小时。然而对于企业来说,尽管SCSI在传输速率和容错性上有较好的表现,但是它昂贵的价格使得用户望而却步。而下一代SCSI技术SAS的诞生,则更好的兼容了性能和价格双重优势。
SAS,接口协议的明日帝国
SAS 是Serial Attached SCSI的缩写,即串行连接SCSI。和流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。
SAS是新一代的SCSI技术,同SATA之于PATA的革命意义一样,SAS 也是对SCSI技术的一项变革性发展。它既利用了已经在实践中验证的 SCSI 功能与特性,又以此为基础引入了SAS扩展器。SAS可以连接更多的设备,同时由于它的连接器较小,SAS 可以在3.5 英寸或更小的 2.5 英寸硬盘驱动器上实现全双端口,这种功能以前只在较大的 3.5 英寸光纤通道硬盘驱动器上能够实现。该功能对于高密度服务器如刀片服务器等需要冗余驱动器的应用非常重要。
为保护用户投资,SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。过去由于SCSI、ATA分别占领不同的市场段,且设备间共享带宽,在接口、驱动、线缆等方面都互不兼容,造成用户资源的分散和孤立,增加了总体拥有成本。用户即使使用不同类型的硬盘,也不需要再重新投资,对于企业用户投资保护来说,实在意义非常。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。
SAS 使用的扩展器可以让一个或多个SAS主控制器连接较多的驱动器。每个扩展器可以最多连接 128 个物理连接,其中包括其它主控连接,其它 SAS 扩展器或硬盘驱动器。这种高度可扩展的连接机制实现了企业级的大量存储空间需求,同时可以方便地支持多点集群,用于自动故障恢复功能或负载平衡。前期,SAS接口速率为3Gbps(SAS1.0),其SAS扩展器多为12端口。6Gbps(SAS2.0)、12Gbps(SAS3.0)的高速接口均已商用,并且会有28或36端口的SAS扩展器出现以适应不同的应用需求。
在SAS接口享有种种得天独厚的优势的同时,SAS产品的成本从芯片级开始,都远远低于FC,而正是因为SAS突出的性价比优势,使SAS在磁盘接口领域,给光纤存储带来极大的威胁。众多厂商均已推出SAS磁盘接口协议的产品,SAS也成为存储的主流接口标准。