散斑

更新时间:2022-08-25 13:58

散斑,也称斑纹。自1960年激光器问世后不久,人们就观察到了一种现象:被激光照明的物体,其表面呈现颗粒状结构。散斑的大小与望远镜爱里斑的大小同数量级。因为粗糙度大于光波波长,所以物体各点发出子波到达观察点的位相是随机分布的。1877年K.埃克斯纳研究散射光干涉现象时,在夫琅和费衍射亮环内观察到辐射颗粒状散斑图样,这种辐射状是光源单色性不够引起的。以双星为例,每个星都产生相同的散斑图样,由于双星之间角距离,会使两个完全相同的散斑图样在空间有一小位移,从而出现类似杨氏干涉的周期条纹。

散斑简述

氦氖激光器为例,λ≈0.6μm)来讲是粗糙的,由于激光的高度相干性,当光波从物体表面反射时,物体上各点到适当距离的观察点的振动是相干的。因此观察点的光场是由粗糙表面上各点发出的相干子波的叠加。因为粗糙度大于光波波长,所以物体各点发出子波到达观察点的位相是随机分布的。相干叠加结果就产生了散斑的随机强度图样──颗粒状。显然,这种随机强度分布图样可用统计方法来描述。从牛顿时代起一些科学家就观察到散斑现象。I.牛顿在当时就解释过为什么能观察到恒星的闪烁现象而观察不到行星的类似现象。人们知道这两类星体的空间相干性是不同的。1877年K.埃克斯纳研究散射光干涉现象时,在夫琅和费衍射亮环内观察到辐射颗粒状散斑图样,这种辐射状是光源单色性不够引起的。1914年M.von劳厄发表的夫琅和费照片更清楚地显示了辐射颗粒状结构,并讨论了它的统计特性。

用散斑图样可对图像信息进行编码和解码、图像相减、反衬度翻转等。

激光散斑

当激光照射在墙壁、纸张、毛玻璃等这些平均起伏大于波长数量级的光学粗糙表面(或透过光学粗糙的透射板)上时,这些表面上无规分布的面元散射的子波相互叠加使反射光场(或透射光场)具有随机的空间光强分布,呈现出颗粒状的结构,这就是激光散斑。

激光散斑具有随机性,无空间参照性,它与无线电收音机的电噪声一样,对信息的传递是有害的。然而噪声本身也是物质运动的一种形式,在无线电广播中人们就利用高频电波作载波传递信息。因此,只要运用得当,散斑也可以成为信息的载体。

激光散斑是激光照射在粗糙表面上而形成的,因此散斑图样的分布必定会依赖于被照表面的细微结构,从而可以利用它来测量表面粗糙度;散斑是由大量细微的高反差亮斑构成,根据“测不准关系”,它的频谱本身必然很宽,因此可利用它对图像信息编码,进行图像的加减,信息存储。

物体的位移或变形必然引起散斑场的变化,因此通过测量散斑场的变化就可以获取物体的形变信息,这就是散斑计量技术的研究内容。

散斑成因

一般地说,电磁波以至粒子束经受介质的无规散射后,其散射场常会呈现确定分布的斑纹结构,这就是所谓的散斑。本文所要研究的散斑是由激光通过粗糙表面散射形成的,并且激光光源具有良好的相干性,而工作环境是不变的,随机场的分布在时域上是稳定的,只是空间坐标的函数,只在某些必要的条件下特别指明时,才涉及到随时间变化的光场的随机特性。

从可见光波长这个尺度看,一般物体表面都很组糙,这样的表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。对比较粗糙的表面来说,不同衍射单元给入射光引入的附加位相之差可达2π的若干倍。经由表面上不同面元透射或反射的光振动在空间相遇时将发生干涉。由于诸面元无规分布而且数量很大,随着观察点的改变,干涉效果将急剧而无规地变化,从而形成具有无规分布的颗粒状结构的衍射图样。以上是在光场通过自由空间传播条件下对散斑成因的说明(见图1) 。如果物体表面通过光学系统成像,只要成像系统的点扩散函数具有足够的“宽度”,折算到物平面后能在物体表面覆盖足够多的面元(见图2),则来自这些面元的光线将在同一像点处相干叠加,从而形成散斑。

散斑分类

由散斑的成因可知,物体表面的性质与照明光场的相干性对散斑观象有着决定性的影响。物体表面的性质不同,或照明光场的相干性不同,都会使散斑具有不同的特点。因此,根据两个因素可以区分散斑的不同类型。此外,人们还常常按照光场的传播方式,把散斑分成远场散斑(与夫琅和费衍射对应)、近场散斑(与菲涅耳衍射对应)和象面散斑三种类型,这种分类方式在理论研究和应用研究中也都是有意义的。也可按照观察条件而将散斑分成主观散斑与客观做斑两种类型,前者实质上是象面散斑,后者则是通过自由空间传播形成的近场和远场散斑。通常人们最感兴趣的是在成像面及夫朗和费衍射面上的散斑。

散斑计量技术

散斑干涉量度术

它为非镜面反射物体提供了一种高灵敏度测量方法。利用散斑图样可以测量物体的位移、振动和形变,成为无损检验的重要手段之一。它的优点是可以调节散斑大小以适应检测器(胶片、电视等)的分辨率而并不降低精度。利用散斑的统计性质可以测量物体表面粗糙度,假若表面均方根粗糙度小于照明光波的波长,则粗糙度可由散斑的反衬度来测定。

星体散斑干涉量度术

由于大气扰动,在长时间曝光下望远镜得到的星体像的分辨本领远低于望远镜的衍射极限。例如一个5米直径望远镜的衍射极限约0.02角秒,而在长曝光时间下的分辨率只有1角秒。在短曝光时间下(约10-2秒),发现在星体的像上有类似散斑的结构。散斑的大小与望远镜的爱里斑的大小同数量级。以双星为例,每个星都产生相同的散斑图样,由于双星之间角距离,会使两个完全相同的散斑图样在空间有一小位移,从而出现类似杨氏干涉的周期条纹。利用这种条纹信息可求得双星的角距离。推广此方法可望得到星体的图像。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}