无极分子

更新时间:2022-10-25 16:12

分子的正负电荷中心在无电场时是重合的,没有固定的电偶极矩, 如氢气高氯酸二氧化碳氮气氧气甲烷聚丙乙烯石蜡等。

简介

分子的正负电荷中心在无电场时是重合的,没有固定的电偶极矩, 如氢气(H2)、高氯酸(HCl4),二氧化碳(CO2),氮气(N2),氧气(O2)、甲烷(CH4)、聚丙乙烯石蜡等。

电介质

定义

所谓电介质,就是通常所说的由大量电中性的分子组成的绝缘体。

在静电场中平衡时:

1.内部电场强度不为零;

2.电介质表面出现极化电荷。

电介质出现极化电荷的现象,称为电介质极化

若把电介质放入静电场中,电介质原子中的电子和原子核在电场力的作用下,在原子范围内作微观的相对位移。在外电场中电介质要受到电场的影响,同时也影响外电场。

分类

电介质可分为无极分子和有极分子。

无极分子和有极分子的区别

有极分子:分子的正负电荷中心在无电场时不重合的,有固定的电偶极矩, 如H2O、HCl、 CO、SO2、环氧树脂陶瓷等。

有极分子的等效电偶极矩:

整个电介质可以看成是无数的点偶极子的聚集体。虽然每个分子的等效点偶极矩不为零,但不管从电介质整体来看,还是从电解质的某一小体积来看,电解质是呈中性的。

无极分子:分子的正电荷中心与负电荷中心重合。

无极分子的等效电偶极矩:

无极分子电介质整体也是呈中性的。

电介质的极化

无极分子的位移极化

加上外电场后,在电场力作用下电介质分子的正负电荷中心不再重合,形成一个电偶极子,它们的等效电偶极矩P的方向都沿着电场的方向。

电介质的两个和外电场强度 相垂直的表面层里,将分别出现正电荷和负电荷。这些电荷不能离开介质,也不能在电介质中自由移动,我们称之为极化电荷。这种在外电场作用下,在电介质中出现极化电荷的现象叫做电介质的极化。

由于无极分子的极化在于正、负电荷中心的相对位移,所以常叫做位移极化。

有极分子的取向极化

无外电场时,有极分子电偶极矩取向不同,整个介质不带电。

在外电场中有极分子的固有电矩要受到一个力矩作用,电矩方向转向和外电场方向趋于一致。

有极分子的极化就是等效电偶极子转向外电场的方向,所以叫做取向极化。

一般来说,分子在取向极化的同时还会产生位移极化,但是,对于有极分子电介质来说,在静电场作用下,取向极化的效应比位移极化的效应强得多,所以有极分子的极化机理是取向极化。

上面从分子的结构出发,说明了两类不同的电介质的极化过程,这两类电介质极化的微观过程虽然不同,但宏观的效果却是相同的,都是在电介质的两个相对表面上出现了异号的极化电荷,在电介质内部有沿电场方向的电偶极矩。

无极分子之间的色散力

组成物质的分子可分为有极分子和无极分子。有极分子中,正负电荷的“中心”不集中在一点,因此形成一对距离很近的等值异号电荷所构成的等效电偶极子,其固有的电偶极矩为p=ql,电偶极子所产生的电场完全由它们的电偶极矩p决定。电偶极子在外电场中所受到的作用力也决定于它的电偶极矩。无极分子中,正负电荷的“中心”集中在一点,因此,分子的电偶极矩为零,对外也不产生电场。在有外电场的情况下,无论是有极分子或是无极分子,都会产生电极化现象,并存在电偶极矩之间的相互作用力。

对无极分子及惰性气体而言,原子结晶体的结合力为共价键,共价键是决定物质分子化学性质的主要因素。分子晶体的结合力是范德瓦耳斯力,对无极分子来说就是色散力,按照伦敦提出的范德瓦耳斯力的量子理论,无极分子的电子云分布是球形对称的,固有电矩为零。因此,它们之间的相互作用能亦为零。这徉无极分子之间似乎就不存在什么作用,但实际不然,例如室温下漠是液体,碘、蔡是固体,H2、02、N2等无极分子在低温下也会被液化或固化,这些物质能维持某种聚集状态,说明无极分子之间存在着一种相互作用力,这种力就是色散力。

虽然无极分子电子云是球形对称分布,不显示出固有电矩,这不过表示在原子核外的四周出现电子的概率相等,即在某段时间内,电偶极矩的统计平均值等于零。但由于每个分子中的电子不断运动和原子核的不断振动,经常发生电子云和原子核之间的瞬时相对位移,使分子的正、负电荷“中心”暂时不重合,产生瞬时偶极矩,而且两个瞬时偶极矩必然是采取异极相邻的状态,这些瞬时偶极矩可以相互作用,相互极化而产生吸引力,这种吸引力如果用带电粒子的线谐振子代表瞬时偶极矩,用量子力学可以证明:

1)两振子无相互作用时,即当两个谐振子平衡点(正电荷所处位置)之间的距离时,系统的能量为

2)两振子有相互作用时,系统的能量为

比较1)、2)式可以看出,两振子相互作用后,能量降低了,降低的数值为:

其中a为极化系数,,h为普朗克常数,v0为振子的振动频率。两振子才能相互作用,表现出它们之间的吸引力。因为它与v0有关,故称为色散力。无极性物质分子之间正是由于色散力的作用才能凝聚为液体,凝固为固体。因此,色散力是决定无极性分子物质物理性质的主要因素。

从上面分析中知道,无论在哪种情况下,由于无极分子瞬时偶极矩的产生,它所具有的电势能、排斥能都大于吸引能按照能量最小原理,即原子中每一个电子都有一个趋势,占据能量最低的能级,当原子中电子的能量最小时,整个原子的能量最低,原子即处于稳定状态。因为能量最小原理具有普遍意义,当原子与原子、离子与离子、分子与分子结合时,同样遵循这一原理,所以,分子具有的吸引能(W)的概率大于它所具有的排斥能的概率。正因为无极分子之间具有最小的吸引能,即最小结合能,所以无极分子可以结合成分子晶体。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}