无限猴子定理

更新时间:2023-11-03 03:25

无限猴子定理是来自埃米尔·博雷尔一本1909年出版谈概率的书籍,当中介绍了“打字的猴子”的概念。

发展简史

无限猴子定理是来自埃米尔·博雷尔的一本于1909年出版谈概率的书籍,当中介绍了“打字的猴子”的概念。这个定理是概率论中的柯尔莫哥洛夫的零一律的其中一个命题的例子。不过,当埃米尔·博雷尔在书中提出零一律的这个特例时,柯尔莫哥洛夫的一般叙述并未给出(柯尔莫哥洛夫那本概率论的著作直到1933年才出版)。

零一律是概率论中的一个定律,它是安德雷·柯尔莫哥洛夫发现的,因此有时也叫柯尔莫哥洛夫零一律。其内容是:有些事件发生的概率不是几乎一(几乎发生),就是几乎零(几乎不发生)。这样的事件被称为“尾事件”。尾事件是由无限多的随机变量的序列来定义的。比如它不是与X1的值无关。比如我们扔无限多次硬币,则连续1000次数字面向上的事件是一个尾事件。

定义

一般关于此定理的叙述为:有无限只猴子用无限的时间会产生特定的文章。

其他取代的叙述,可能是用大英图书馆美国国会图书馆取代法国国家图书馆;另一个常见的版本是英语使用者常用的,就是猴子会打出莎士比亚的著作。欧洲大陆还有一种说法版是猴子打出大英百科全书。在《从一到无穷大》中,作者则引用了哈姆雷特的例子。

验证推导

简要说明

在无穷长的时间后,即使是随机打字猴子也可以打出一些有意义的单词,比如,cat, dog。因此,可以类推,会有一个足够幸运的猴子或连续或不连续地打出一本书,即使其几率比连续抓到一百次同花顺还要低。但在足够长的时间(长到你数不清它的秒数有多少位)后,其发生是必定的。

数学证明

两个独立事件同时发生的概率等于其中每个事件单独发生的概率的乘积。比如,在某一天悉尼下雨的可能性为0.3,同时旧金山地震的可能性是0.008(这两个事件可以视为相互独立的),那么它们同时发生的概率是 0.3 × 0.008 = 0.0024。

假设一个打字机有50个键,想要打出的词是“banana”。随机的打字时,打出第一个字母“b”的概率是 ,打出第二个字母“a”的概率也是 ,因为事件是独立的,所以一开始就打出单词“banana”的概率是:

这个概率小于150亿分之1。 同理,接下来继续打出“banana”的概率也是 。

所以,在给定的六个字母没有打出“banana”的概率是。因为每一段(6个字母)文字都是独立的,连续n段都没有打出“banana”的概率 是:

随着n变大, 在变小。当n等于100万时,大约是0.9999(没有打出“banana”的概率是99.99%);但是当n等于100亿时 大约是0.53(没有打出“banana”的概率是53%);当n等于1000亿时 大约是0.0017(没有打出“banana”概率是0.17%);当n趋于无穷时 趋于零。这就是说,只要使n足够大, 可以变得足够小。

同样的论证也可以说明在无限多的猴子中有至少一个会打出一段特定的文章。这里

,其中 表示在前n个猴子中没有一个一次打出banana的概率。当我们有1000亿只猴子时,这个概率降低到0.17%,并且随着猴子数量n趋于无穷大,没有打出“banana”的概率 趋于0。

但是,在只有有限的时间和有限只猴子时,结论就大不一样了。如果我们的猴子数量和可观测宇宙中的基本粒子数量一样多,大约10的80次方只,每秒钟打1000个字,持续打100倍于宇宙的生命长度的时间(大约10的20次方秒)有猴子能够打出一本很薄的书的概率也无限接近于0。

无限长的字符串

以下两种情况可以扩展到所有的字符串

1.给定一个无限长的字符串,其中的每一个字符都是随机产生的,那么任意有限的字符串都会作为一个子字符串出现在其中(事实上要出现无限多次)。

2.给定一个序列,其中有无限多个无限长的字符串,其中每一个字符串中的每一个字符都是随机产生的,那么任意有限的字符串都会出现在其中某些字符串的开头(事实上是无限多个字符串的开头)。

对于第二个定理,设Ek某给定字符串出现在第k个字符串开头的事件。有固定的且不为零的概率p是这个事件发生,而且Ek是独立的,所以:

事件Ek发生无穷多次的概率是1。第一个定理可以类似地处理,先将无限长的字符串分割,使得每一段的长度和给定字符串相同,然后设Ek是第k段等于给定字符串的事件。

概率论证

不算标点符号、空格、大小写,一个猴子随机打字打出的第一个字母和哈姆雷特中相同的概率是 ,前两个字母相同的概率是 【即 】。因为概率发生了指数爆炸,前20个字母相同的概率是 ,约等于 。而打出的字和哈姆雷特中的全部文本相同的概率降低到超出人们的想象。整部哈姆雷特大约有130,000个字母。虽然有 的概率一遍就正确地打出所有文本,在打出正确的文字之前平均需要输入的字母数量也要,或者包括标点符号, 。即使可观测宇宙中充满了猴子一直不停地打字,能够打出一部哈姆雷特的概率仍然少于 。(可见其概率之低)

现实证明

不过在现实中,猴子打出一篇像样的文章的几率几乎是零,因为科学家经过反复试验后发现,猴子在使用键盘时通常会连按某一个键或拍击键盘,最终打出的文字不可能成为一个完整的句子。由于英语字母有26个,加上字符等更是不止30个。因此,猴子输出的字符几乎全部是废话,只能在浩如烟海的字母中,找到少许有意义的片段。

这个定理本身在现实生活中是不可能重现的,但这并没有阻止某些人的尝试:2003年,一家英国动物园的科学家们“试验”了无限猴子定理,他们把一台电脑和一个键盘放进灵长类园区。可惜的是,猴子们并没有打出什么十四行诗

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}