时不变系统

更新时间:2024-01-13 08:19

可将动态系统依据连续时间系统分为两大类:时变系统时不变系统。其中,时不变系统,亦称平稳系统,指特性不随时间变化的系统。用数学表示为:T[x(n)]=y[n]则 T[x(n-n0)]=y[n-n0],这说明序列x(n)先移位后进行变换与它先进行变换后再移位是等效的。

定义

语言描述

时不变系统(time-invariant system)数学上可精确定义为:在时间平移变换下保持形式不变的系统。在用微分差分方程描述的时不变系统中,其方程式中不显含时间变量t。

表达式描述

形式一:

设系统的状态空间描述为:

向量函数f(x,u,t)与g(x,u,t)为:

若向量f,g不显含时间变量t,即有:

则称该系统为时不变系统。

形式二:

若有T[x(n)]=y[n],则有 T[x(n-n0)]=y[n-n0]。

这说明序列x(n)先移位后进行变换与它先进行变换后再移位是等效的。

注意事项

时不变系统物理上代表结构和参数都不随时间变化的一类系统。严格地说,由于内部影响和外部影响的存在,时不变系统只是时变系统的一种理想化模型。但是,只要这种时变过程比之系统动态过程足够地慢,那么采用时不变系统代替时变系统进行分析,仍可保证具有足够的精确度。由于时不变系统在分析和综合上的简单性,线性时不变系统是讨论的重点。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}