更新时间:2024-04-03 16:21
在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树。
最小生成树其实是最小权重生成树的简称。
生成树和最小生成树有许多重要的应用。
例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。
说明
最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。
证明
为方便说明,先作以下约定:
用反证法证明MST性质:
假设G中任何一棵MST都不含轻边(u,v)。则若T为G的任意一棵MST,那么它不含此轻边。
根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u',v')连接红点集和蓝点集,否则u和v不连通。当把轻边(u,v)加入树T时,该轻边和P必构成了一个回路。删去紫边(u',v')后回路亦消除,由此可得另一生成树T'。
T'和T的差别仅在于T'用轻边(u,v)取代了T中权重可能更大的紫边(u',v')。因为w(u,v)≤w(u',v'),所以
w(T')=w(T)+w(u,v)-w(u',v')≤w(T)
即T'是一棵比T更优的MST,所以T不是G的MST,这与假设矛盾。
所以,MST性质成立。
求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。
当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。
Prim算法简述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew= {x},其中x为集合V中的任一节点(起始点),Enew= {},为空;
3).重复下列操作,直到Vnew= V:
a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
Kruskal算法简述
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
伪代码
GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始为空,是指顶点集和边集均空
while T未形成G的生成树 do{
找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集
T=T∪{(u,v)}; //加入安全边,扩充T
}
return T; //T为生成树且是G的一棵MST
}
注意:
下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。
为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:
V(G)={0,1,…,n-1},
G中边上的权解释为长度,并设T=(U,TE)。
C语言代码
Kruskal算法 - pascal语言
program didi;
var
a:array[0..100000] of record
s,t,len:longint;
end;
fa,r:array[0..10000] of longint;
n,i,j,x,y,z:longint;
tot,ans:longint;
count,xx:longint;
procedure quick(l,r:longint);
var
i,j,x,y,t:longint;
begin
i:=l; j:=r;
x:=a[(l+r) div 2].len;
repeat
while x>a[i].len do inc(i);