最小生成树

更新时间:2024-04-03 16:21

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。

概述

在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树。

最小生成树其实是最小权重生成树的简称。

应用

生成树和最小生成树有许多重要的应用。

例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。

性质

说明

最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。

证明

为方便说明,先作以下约定:

用反证法证明MST性质:

假设G中任何一棵MST都不含轻边(u,v)。则若T为G的任意一棵MST,那么它不含此轻边。

根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u',v')连接红点集和蓝点集,否则u和v不连通。当把轻边(u,v)加入树T时,该轻边和P必构成了一个回路。删去紫边(u',v')后回路亦消除,由此可得另一生成树T'。

T'和T的差别仅在于T'用轻边(u,v)取代了T中权重可能更大的紫边(u',v')。因为w(u,v)≤w(u',v'),所以

w(T')=w(T)+w(u,v)-w(u',v')≤w(T)

即T'是一棵比T更优的MST,所以T不是G的MST,这与假设矛盾。

所以,MST性质成立。

算法描述

求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。

当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。

Prim算法简述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew= {x},其中x为集合V中的任一节点(起始点),Enew= {},为空;

3).重复下列操作,直到Vnew= V:

a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

Kruskal算法简述

假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

伪代码

GenerieMST(G){//求G的某棵MST

T〈-¢; //T初始为空,是指顶点集和边集均空

while T未形成G的生成树 do{

找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集

T=T∪{(u,v)}; //加入安全边,扩充T

}

return T; //T为生成树且是G的一棵MST

}

注意:

下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。

为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:

V(G)={0,1,…,n-1},

G中边上的权解释为长度,并设T=(U,TE)。

C语言代码

Kruskal算法 - pascal语言

program didi;

var

a:array[0..100000] of record

s,t,len:longint;

end;

fa,r:array[0..10000] of longint;

n,i,j,x,y,z:longint;

tot,ans:longint;

count,xx:longint;

procedure quick(l,r:longint);

var

i,j,x,y,t:longint;

begin

i:=l; j:=r;

x:=a[(l+r) div 2].len;

repeat

while x>a[i].len do inc(i);

while x

if i<=j then

begin

y:=a[i]; a[i]:=a[j]; a[j]:=y;

inc(i);dec(j);

end;

until i>j;

if i

if l

end;

function find(x:longint):longint;

begin

if fa[x]=x then exit(x);

fa[x]:=find(fa[x]);{路径压缩}

exit(fa[x]);

end;

procedure union(x,y:longint);{启发式合并}

var

t:longint;

begin

x:=find(x);

y:=find(y);

if r[x]>r[y] then

begin

t:=x; x:=y; y:=t;

end;

if r[x]=r[y] then inc(r[x]);

fa[x]:=y;

end;

begin

readln(xx,n);

for i:=1 to xx do fa[i]:=i;

for i:=1 to n do

begin

read(x,y,z);

inc(tot);

a[tot].s:=x;

a[tot].t:=y;

a[tot].len:=z;

end;

quick(1,tot);{将边排序}

ans:=0;

count:=0;

i:=0;

while count<=x-1 do{count记录加边的总数}

begin

inc(i);

with a[i] do

if find(s)<>find(t) then

begin

union(s,t);

ans:=ans+len;

inc(count);

end;

end;

write(ans);

end.

Prim算法 - pascal语言

var

m,n:set of 1..100;

s,t,min,x,y,i,j,k,l,sum,p,ii:longint;

a:array[1..100,1..100]of longint;

begin

readln(p);

for ii:=1 to p do

begin

k:=0; sum:=0;

fillchar(a,sizeof(a),255);

readln(x);

m:=[1];

n:=[2..x];

for i:=1 to x do

begin

for j:=1 to x do

begin

read(a[i,j]);

if a[i,j]=0

then a[i,j]:=maxlongint;

end;

readln;

end;

for l:=1 to x-1 do

begin

min:=maxlongint;

for i:=1 to x do

if i in m

then begin

for j:=1 to x do

begin

if (a[i,j]

then begin

min:=a[i,j];

s:=i;

t:=j;

end;

end;

end;

sum:=sum+min;

m:=m+[t];

n:=n-[t];

inc(k);

end;

writeln(sum);

end;

end.

C++模板

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}