更新时间:2023-02-07 17:45
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
梯度:对于可微的数量场,以为分量的向量场称为f的梯度或斜量。
梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。
顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。
其迭代公式为 ,其中 代表梯度负方向, 表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标看做是ak+1的函数,然后求满足f(ak+1)的最小值的ak+1即可。
因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。
举一个非常简单的例子,如求函数 的最小值。
利用梯度下降的方法解题步骤如下:
1、求梯度,
2、向梯度相反的方向移动 ,如下
,其中, 为步长。如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。
3、循环迭代步骤2,直到 的值变化到使得 在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的 基本没有变化,则说明此时 已经达到局部最小值了。
4、此时,输出 ,这个 就是使得函数 最小时的 的取值 。
MATLAB如下。
梯度下降法处理一些复杂的非线性函数会出现问题,如Rosenbrock函数:,其最小值在 处,函数值为 。但是此函数具有狭窄弯曲的山谷,最小点 就在这些山谷之中,并且谷底很平。优化过程是之字形的向极小值点靠近,速度非常缓慢。