更新时间:2023-05-29 01:20
次级电子发射,通常指由于初级电子撞击固体,导致固体内发射电子的过程。
以高速运动的电子撞击固体,从而再释放出电子的过程。用于光电倍增管的倍增极,进行二次电子放大作用。经7~13个倍增极,光电流可放大到106倍。
它是制作扫描电子显微镜、电子倍增器、光电倍增管及很多真空器件的基础。扫描电子显微镜的次级电子像又是区别不同表面形貌的重要手段,但它的分析深度大约是200┱。
次级电子产额 δ定义为对应于每个初级电子所发射出的次级电子数目,δ的数值与初级电子的能量有关。由固体发射的次级电子依赖于体内和表面的电子结构、入射束的能量及角度以及表面形貌。次级电子发射可认为有三个基本步骤:固体内的电子被激发到高能态;然后在表面附近运动;最后克服表面势垒逃逸到真空。可将电子在表面附近的传播和逃逸表面的能力用逃逸深度表示。逃逸深度一般与入射束的能量关系较小,而与样品种类关系很大。例如对金属,电子间相互作用强,在传播过程中能量损失大,逃逸深度小于10nm,电子产额极值δm也较小。对于绝缘体,电子逃逸表面时只有用于激发声子的能量损失。逃逸深度和δ都比金属大。
次级电子的动能大多数小于50eV,远离次级电子能谱主峰,位于1~6eV的峰称做慢峰。俄歇电子也是次级电子,是强度很低的次级电子,用作表面化学分析。
晶体次级电子发射的各向异性,与激发电子的能量分布、态密度结构密切相关。降低入射电子能量,可以得到激发到表面共振态的次级电子发射。