更新时间:2024-10-11 21:55
1742年,哥德巴赫给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,然而一直到去世,欧拉也无法证明。
从关于偶数的哥德巴赫猜想,可推出:任何一个大于7的奇数都能被表示成三个奇质数的和。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
殆素数就是素因子个数不多的正整数
“a + b”问题的推进
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1956年,中国的王元证明了“3 + 4”。稍后证明了 “3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
例外集合
在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于E(x)永远等于1。当然,还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。这就是例外集合的思路。
维诺格拉多夫的三素数定理发表于1937年。第二年,在例外集合这一途径上,就同时出现了四个证明,其中包括华罗庚先生的著名定理。
业余搞哥德巴赫猜想的人中不乏有人声称“证明”了哥德巴赫猜想在概率意义下是对的。实际上他们就是“证明”了例外偶数是零密度。这个结论华罗庚早在60年前就已真正证明出来。
三素数定理
我们可以把这个问题反过来思考:如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。已知奇数N可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。这个思想促使潘承洞先生在1959年,25岁时,研究有一个小素变数的三素数定理。这个小素变数不超过N的θ次方。我们的目标是要证明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承洞先生首先证明θ可取1/4。后来的很长一段时间内,这方面的工作一直没有进展,直到1995年展涛教授把潘老师的定理推进到7/120。这个数已经比较小了,但是仍然大于0。
几乎哥德巴赫问题
1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德巴赫问题,证明了,存在一个固定的非负整数k,使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德巴赫猜想,实际上它是非常深刻的。我们注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过log x的k次方。因此,林尼克定理指出,虽然我们还不能证明哥德巴赫猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德巴赫问题向哥德巴赫猜想逼近的程度,数值较小的k表示更好的逼近度。显然,如果k等于0,几乎哥德巴赫问题中2的方幂就不再出现,从而,林尼克的定理就是哥德巴赫猜想。
林尼克1953年的论文并没有具体定出k的可容许数值,此后四十多年间,人们还是不知道一个多大的k才能使林尼克定理成立。但是按照林尼克的论证,这个k应该很大。1999年,作者与廖明哲及王天泽两位教授合作,首次定出k的可容许值54000。这第一个可容许值后来被不断改进。其中有两个结果必须提到,即李红泽、王天泽独立地得到k=2000。最好的结果k=13是英国数学家希思-布朗(D. R. Heath-Brown)和德国数学家普赫塔(Puchta)合作取得的,这是一个很大的突破。
华罗庚是中国最早从事哥德巴赫猜想的数学家。1936~1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。
1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题。参加讨论班的学生,例如王元、潘承洞和陈景润等在哥德巴赫猜想的证明上取得了相当好的成绩。
1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”,即他证明了任何一个充分大的偶数,都可以表示为两个数之和,其中一个是素数,另一个或为素数,或为两个素数的乘积,被称为“陈氏定理”。