更新时间:2023-02-28 16:06
氦,原子序数2,原子量4.002602,为稀有气体的一种。元素名来源于希腊文,原意是“太阳”。1868年有人利用分光镜观察太阳表面,发现一条新的黄色谱线,并认为是属于太阳上的某个未知元素,故名氦。后有人用无机酸处理沥青铀矿时得到一种不活泼气体,1895年英国科学家拉姆赛用光谱证明就是氦。以后又陆续从其他矿石、空气和天然气中发现了氦。氦在地壳中的含量极少,在整个宇宙中按质量计占23%,仅次于氢。氦在空气中的含量为0.0005%。氦有两种天然同位素:氦3、氦4,自然界中存在的氦基本上是氦4。
氦在通常情况下为无色、无味的气体;熔点-272.2°C(25个大气压),沸点-268.9°C;密度0.1785克/升,临界温度-267.8°C,临界压力2.26大气压;水中溶解度8.61厘米3/千克水。氦是唯一不能在标准大气压下固化的物质。液态氦在温度下降至2.18K时,性质发生突变,成为一种超流体,能沿容器壁向上流动,热传导性为铜的800倍,并变成超导体;其比热容、表面张力、压缩性都是反常的。
氦是最不活泼的元素,基本上不形成什么化合物。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和超低温冷冻剂
元素名称:氦
氦原子核
原子序数:2
元素原子量:4.0026
外围电子排布:1s2
核外电子排布:2
常见化合价:0
元素类型:非金属
发现人:杨森 发现年代:1868年
发现过程:
1868年,法国的杨森,最初从日冕光谱内发现太阳中有新元素,即氦。
是惰性元素之一。其单质氦气,分子式为 He,是一种稀有气体,无色、无臭、无味。它在水中的溶解度是已知气体中最小的,也是除氢气以外密度最小的气体。密度0.17847克/升,熔点-272.2℃(26个大气压)。沸点-268.9℃。它是最难液化的一种气体,其临界温度为-267.9℃。临界压力为2.25大气压。当液化后温度降到-270.98℃以下时,具有表面张力很小,导热性很强,粘性很强的特性。液体氦可以用来得到接近绝对零度(-273.15℃)的低温。化学性质十分不活泼,既不能燃烧,也不能助燃。
氦是放射性元素分裂的产物,α质点就是氦的原子核。在工业中可由含氦达7%的天然气中提取。也可由液态空气中用分馏法从氦氖混合气体中制得。
用它填充电子管、气球、温度计和潜水服等。也用于原子核反应堆和加速器、冶炼、和焊接时的保护气体。
1868年8月18日,法国天文学家詹森赴印度观察日全食,利用分光镜观察日珥,从黑色月盘背面如出的红色火焰,看见有彩色的彩条,是太阳喷射出来的帜热其他的光谱。他发现一条黄色谱线,接近钠光谱总的D1和D2线。日蚀后,他同样在太阳光谱中观察到这条黄线,称为D3线。1868年10月20日,英国天文学家洛克耶也发现了这样的一条黄线。
经过进一步研究,认识到是一条不属于任何已知元素的新线,是因一种新的元素产生的,把这个新元素命名为 helium,来自希腊文helios(太阳),元素符号定为He。这是第一个在地球以外,在宇宙中发现的元素。为了纪念这件事,当时铸造一块金质纪念牌,一面雕刻着驾着四匹马战车的传说中的太阳神阿波罗像,另一面雕刻着詹森和洛克耶的头像,下面写着:1868年8月18日太阳突出物分析。
过了20多年后,莱姆塞在研究钇铀矿时发现了一种神秘的气体。由于他研究了这种气体的光谱,发现可能是詹森和洛克耶发现的那条黄线D3线。但由于他没有仪器测定谱线在光谱中的位置,他只有求助于当时最优秀的光谱学家之一的伦敦物理学家克鲁克斯。克鲁克斯证明了,这种气体就是氦。这样氦在地球上也被发现了。
在上世纪初的几十年里,世界各国都在寻找氦气资源,在当时主要是为了充飞艇。但是到了今天,氦不仅用在飞行上,尖端科学研究,现代化工业技术,都离不开氦,而且用的常常是液态的氦,而不是气态的氦。液态氦把人们引到一个新的领域——低温世界。
前面已经讲过拉姆赛在空气中找氦气的故事。在液态空气的温度下,氦和氖仍然是气体;在液态氢的温度下,氖变成了固体,可是氦仍然是气体。
要冷到什么程度,氦才会变成液体呢?
前面已说过,英国物理学家杜瓦在1898年首先得到了液态氢。就在同一年,荷兰的物理学家卡美林·奥涅斯也得到了液态氢。液态氢的沸点是零下253摄氏度,在这样低的温度下,其他各种气体不仅变成液体,而且都变成了固体。只有氦是最后一个不肯变成液体的气体。卡美林·奥涅斯决心把氦气也变成液体。
1908年7月,卡美林·奥涅斯成功了,氦气变成了液体。他第一次得到了320立方厘米的液态氦。
要得到液态氦,必须先把氦气压缩并且冷却到液态氢的温度,然后让它膨胀,使温度进一步下降,氦气才能变成液体。
液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。
液态氦是一种与众不同的液体,它在零下269摄氏度就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。
多少年来,全世界只有荷兰卡美林·奥涅斯的实验室能制造液态氦。直到1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。
在今天,液态氦在现代技术上得到了重要的应用。例如要接收宇宙飞船发来的传真照片或接收卫星转播的电视信号,就必须用液态氦。接收天线末端的参量放大器要保持在液氦的低温下,否则就不能收到图像。
然而,液态氦的奇妙之处还不在于低温。
卡美林·奥涅斯是第一个得到液氦的科学家。他并不满足,还想使温度进一步降低,以得到固态氦。他没有成功(固态氦是1926年基索姆用降低温度和增大压力的方法首先得到的),却得到了一个没有预料到的结果。
对于一般液体来说,随着温度降低,密度会逐渐增加。卡美林·奥涅斯使液态氦的温度下降,果然,液氦的密度增大了。但是,当温度下降到零下271摄氏度的时候,怪事出现了,液态氦突然停止起泡,变成像水晶一样的透明,一动也不动,好像一潭死水,而密度突然又减小了。
这是另一种液态氦。卡美林·奥涅斯把前一种冒泡的液态氦叫做氦Ⅰ,而把后一种静止的液态氦做氦Ⅱ。
把一个小玻璃杯按在氦Ⅱ中。玻璃杯本是空的,但是过了一会,杯底出现了液态氦,慢慢地涨到跟杯子外面的液态氦一样平为止。
把这个盛着液态氦的小玻璃杯提出来,挂在半空。看,玻璃杯底下出现了液氦,一滴,两滴,三滴……不一会,杯中的液态氦就“漏”光了。是玻璃杯漏了吗?不,玻璃杯一点也不漏。这是怎么回事呢?
原来氦Ⅱ是能够倒流的,它会沿着玻璃杯的壁爬进去又爬出来。这是在我们日常生活中没有碰到过的现象,只有在低温世界才会发生。这种现象叫做“超流动性”,具有“超流动性”的氦Ⅱ叫做超流体。
后来,许多科学家研究了这种怪现象,又有了许多新的发现。其中最有趣的是1938年阿兰等人发现的氦刀喷泉。
在一根玻璃管里,装着很细的金刚砂,上端接出来一根细的喷嘴。将这玻璃管浸到氦Ⅱ中,用光照玻璃管粗的下部,细喷嘴就会喷出氦Ⅱ的喷泉,光越强喷得越高,可以高达数厘米。
氦Ⅱ喷泉也是超流体的特殊性质。在这个实验中,光能直接变成了机械能。
大家还记得拉姆赛把各种物质放到液态空气中的各种奇妙的实验吧。各种物质放在液态氦里,情况就更奇妙了。
看!在液氦的温度下,一个铅环,环上有一个铅球。铅球好像失去了重量,会飘浮在环上,与环保持一定距离。
再看!在液氦的温度下,一个金属盘子,把细链子系着磁铁,慢慢放到盘子里去。当磁铁快要碰到盘子的时候,链子松了,磁铁浮在盘子上,怎样也不肯落下去。
真像是到了魔术世界!这一切,只能在液态氦的温度下发生。温度一升高,魔术就不灵了,铅球落在铅环上,磁铁也落在金属盘子里了。
这是低温下的超导现象。
原来,有些金属,在液态氦的温度下,电阻会消失;在金属环和金属盘中,电流会不停地流动而产生磁场。这时候,磁场的斥力托住了铅球和磁铁,使它们浮在半空中。
在低温下,出现了许多奇妙的物理现象。许多重要的物理实验,都要在低温下进行。
世界各国的物理学家还在研究液态氦,希望通过液态氦达到更低的温度,研究各种物质在低温下会发生什么奇妙的变化,会有什么我们还不知道的性质。这就产生了物理学的一个新的分支——低温物理学。
氦,这个奇妙的物质,一直在引起科学家们的注意。科学家们继续研究氦,通过科学实验,不断地为氦写下一页又一页新的历史。
物理学家不仅仅得到了液态氦,还得到了固态氦,他们正在向绝对零度进军(物理学把零下273.16摄氏度叫做绝对零度。这个温度标叫做绝对温标,用K表示。0K就是-273.16℃,而273.16K就是0℃)。从理论上讲,绝对零度是达不到的,但是可以不断接近它。液态氢的沸点是绝对温标20.2度,液态氦的沸点是绝对温标4.2度。在绝对温标2.19度的时候,氦Ⅰ变为氦Ⅱ。1935年,利用“绝热去磁”法,使液态氦冷到绝对温标0.0034度;1957年,达到绝对温标0.00002度;已达到跟绝对零度只相差0.000001度了。
天文学家也继续研究着太阳元素。太阳上的氢“燃烧”变成了氦,以后的命运又如何呢?他们发现宇宙间有一些比太阳更炽热的恒星,中心温度达到几亿度。在这些恒星的核心,氢原子核已经都变成了氦原子核,氦原子核又相互碰撞,正在生成着碳原子核和氧原子核,同时放出大量的能。这类恒星橡心脏一样,一会儿膨胀,一会儿收缩,很有规律。为什么会这样?这也是因为氦在起作用。
天文学家还研究了银河系内氢的含量和氦的含量的比值。根据这个比值,有人估算了银河系的年龄有一二百亿年。
氦的历史并没有完,人类认识氦的历史也没有完,而我们这本讲氦的故事的小册子,却不得不结束了。
要问在发现氦和研究氦的历史上谁的功劳最大,是天文学家詹森和罗克耶吗?是化学家拉姆赛和物理学家克鲁克斯吗?是发明分光镜的本生与基尔霍夫吗?当然还要考虑把空气、氢气以及氦气液化的汉普松、卡美林·奥涅斯等人的功劳。
很难说。在人类认识氦的历史上,他们都有着自己的贡献。氦仅仅是一种元素,但是发现它和认识它,是许多门科学——物理学、天文学、化学、地质学等的共同胜利,决不是某一个人的力量能够完成的。
科学是没有平坦的道路可走的,只有不畏艰险不怕困难的人才能攀登科学的高峰。通过氦的发现的历史,我们看到许多科学家们正是这样勇于实践的人。他们有严谨的科学态度,对于实验中的一点细微现象——一个小气泡,第三位小数的细微差异,也不放过。他们不但爱问为什么,而且千方百计地去寻找答案。他们埋头苦干,几个月、一年、几年坚持不懈,终于由纷乱的谜团中找出头绪,得到了解答。他们永远不满足已有的成绩,而是深人一步、再深入一步地钻研。人们对氦的认识就是这样逐步深入的。到现在为止,谁也不敢这样说:“氦,我们已经完全认识清楚了。”
2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,α粒子放射在一类致癌物清单中。α粒子释放出的放射性同位素在人体外部不构成危险,但是释放α粒子的物质(镭、铀等)一旦被吸入或注入,那将会十分危险,能直接破坏内脏的细胞。