波茨曼机

更新时间:2023-08-01 20:18

波茨曼机(Boltzmann machine)是随机神经网络递归神经网络的一种,由杰弗里·辛顿(Geoffrey Hinton)和特里·谢泽诺斯基(Terry Sejnowski)在1985年发明。

波茨曼机可被视作随机过程的,可生成的相应的Hopfiled神经网络。它是最早能够学习内部表达,并能表达和(给定充足的时间)解决复杂的组合优化问题的神经网络。但是,没有特定限制连接方式的波茨曼机目前为止并未被证明对机器学习的实际问题有什么用。所以它目前只在理论上显得有趣。然而,由于局部性和训练算法的赫布性质(Hebbian nature),以及它们和简单物理过程相似的并行性,如果连接方式是受约束的(即约束波茨曼机),学习方式在解决实际问题上将会足够高效。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}