更新时间:2022-08-26 10:31
由一个或多个能在受力后产生形变的弹性体,和能感应这个形变量的电阻应变片组成的电桥电路(如惠斯登电桥),以及能把电阻应变片固定粘贴在弹性体上并能传导应变量的粘合剂和保护电子电路的密封胶等三大部分组成测力传感器。
在受到外力作用后,粘贴在弹性体的应变片随之产生形变引起电阻变化,电阻变化使组成的惠斯登电桥失去平衡输出一个与外力成线性正比变化的电量电信号。
弹性体的材料
测力传感器弹性体材料,一般选用金属材质,可选用的材质大部分为铝合金材质、合金钢材质及不锈钢材质。合金材质既有刚度保证形变一致及形变恢复,又有良好的耐候防腐性能。弹性体的主要要求就是能够精确传递受力信息并保持在相同受力时的形变一致性和完全复位性。
应变片及电阻元件材料
电阻应变片的组成复杂,是复合型制造产品,应变片的基材和应变铜质的组合千变万化,根据其应变要求,目前,大约有近千种产品。一般,基材采用高分子薄膜材料,应变材质为高纯度康铜。基材上的康铜通过光学处理后刻蚀不同感应形变的电阻栅丝。因此,电阻应变片的品质不仅与基材材质和复合的金属纯度有关,而且与复合工艺、刻蚀技术及工艺、刻蚀化学材料及后处理工艺和材料等等因素相关。
贴片粘合剂的材质
电阻应变片贴片用粘合剂主要采用双组分高分子环氧系列粘合剂,高分子化学产品的性能与各个组分的物理及化学指标密切相关,如纯度、分子链的结构和大小、储存时间、组分的配比、分子改性、混合方式、混合熟化使用时间、固化时间、固化温度、助剂及百分比等因素。
密封胶的材质
在焊接技术及设备不充分的测力传感器初期阶段,均采用专用硅橡胶密封胶系列。硅橡胶具有长期化学稳定性,因此,防腐、防潮、耐老化、绝缘等各项性能优异,长期以来一直是所有密封胶的首选产品。
测力传感器的导线材质
导线依然是测力传感器组成的一部分,测力传感器导线的金属材质,由于家庭电器的电线使用,质量差异都有切身体会。毕竟导线是桥路供电、信号输出、长线激励电压补偿的通路,镀银线肯定比铜线传导效果好,铜线肯定比铝线传导效果好,其作用不言而喻。
随着,各种高频、无线电波等越来越多的干扰,测力传感器的优良屏蔽也是保护信号稳定的重要方法。另外,环境侵蚀、虫鼠侵害、防火阻燃等也需要传感器保护层的材料防腐防虫防火防爆,甚至需要采用铠甲保护、套管防护等方法。
导线密封材料及方式
测力传感器的每个组成部分都会影响传感器最终的技术性能,一些测力传感器仅仅采用简单固定的方式避免传感器导线的移动而损伤传感器的电子电路固定,一些传导距离很短的测力传感器甚至仅仅依靠胶封固定。但较大体积、重量较大的测力传感器,如果没有适当导线固定或密封的方式,就是测力传感器最易产生故障的瓶颈。特别是加装密封头固定导线时,紧固件的材质及紧固力度也会给测力传感器的最终技术性能带来影响。观察者发现,很少有使用紧固件安装使用密封粘合剂的,这样可以避免依靠紧固力固定带来的残余应力,也不会由于紧固力不足而产生泄露的问题。
影响测力传感器稳定性的因素较多,归纳起来主要有:
1、测力传感器的结构
测力传感器的弹性元件、外壳、膜片及上压头、下压垫的设计,都必须保证受载后在结构上不产生性能波动,或性能波动很小,为此在测力传感器设计时,应尽量作到应变区受力单一,应力均匀一致;贴片部位最好为平面;在结构上保证具有一定的抗偏心载荷和侧向载荷的能力;安装力远离应变区,测量时应避免载荷支承点的位移。尽管测力传感器属于装配制造产品,但为了保证具有最佳技术性能和长期稳定性,尽可能将它设计成一个整体结构。
2、弹性元件的金属材料
弹性元件的金属材料对测力传感器的综合性能和长期稳定性起关键作用。应选择强度极限和弹性极限高,弹性模量的时间、温度稳定性好,弹性滞后小,机械加工和热处理产生的残余应力小的材料。有资料表明:只要材料淬火后的塑性好,它在机械加工和热处理后的残余应力就小。还要特别重视弹性模量随时间的稳定性,要求在测力传感器使用寿命期间内材料的弹性模具不发生变化。
3、机械加工与热处理工艺
弹性元件在机械加工过程中,由于表面变形的不均匀产生较大的残余应力,切削用量越大,残余应力就越大,磨削加工产生的残余应力最大。因此应制订合理的加工工艺和规定适当的切削用量。弹性元件在热处理过程中,由于冷却温度不均匀和金属材料相变等原因,在芯部和表层产生方向不同的残余应力,其芯部为拉应力,表层为压应力。必须通过回火处理工艺,在其内部产生方向相反的应力,与残余应力相互抵消,减少残余应力的影响。
4、电阻应变计与应变粘结剂
电阻应变计应具有最佳性能,要求灵敏系数稳定性好,热输出小,机械滞后和蠕变小,应变量为1000×10-6时疲劳寿命可达108,电阻值偏差小,批次质量均一性好等。应变粘结剂应具有粘结强度大,抗剪强度高;弹性模量较大且稳定;电绝缘性能好;具有与弹性元件相同或相近的热膨胀系数;蠕变和滞后小;固化时胶层体积收缩小等。粘贴电阻应变计时一定要严格控制胶层厚度,因为粘结强度随胶层厚度的增加而降低。
这是由于薄的胶层需要更大的应力才能变形,不易产生流动和蠕变,界面上的内应力很小,产生气泡和缺陷的几率也比较小,应变传递性能好,只要防护密封合理就可达到较高的稳定性水平。
5、制造工艺流程
应变式测力传感器的工作原理和总体结构决定了,在生产工艺流程中有些工序必须手工操作,人为的因素对测力传感器的质量影响较大。因此必须制订科学合理并可重复的制造工艺流程,并在其中增加电子计算机控制的自动化或半自动化工序,尽量减少人为因素对产品质量的影响。
6、电路补偿与调整
应变式测力传感器属于装配制造,贴片组桥后就形成了产品,由于内部不可避免的产生一些缺陷和外界环境条件的影响,测力传感器的某些性能指标达不到设计要求,因此必须进行各项电路补偿与调整,提高测力传感器本身的稳定性和对外部环境条件的稳定性。完善而精细的电路补偿工艺,是提高测力传感器稳定性的重要环节。
7、防护与密封
防护与密封是测力传感器制造工艺流程中的要害工序,是测力传感器耐受客观环境和感应环境影响而能稳定可靠工作的根本保障。如果防护密封不良,粘贴在弹性元件上的电阻应变计及应变粘结剂胶层,都会吸收空气中的水分而产生增塑,造成粘结强度和刚度下降,引起零点漂移和输出无规律变化,直至测力传感器失效。
因此有效的防护密封是测力传感器长期稳定工作的根本保证,否则将使各项工艺成果前功尽弃。
8、稳定性处理 (人工老炼试验)
提高测力传感器的稳定性除处理好上述各种因素的影响外,最重要的途径就是采取各种技术措施和工艺手段,模拟使用条件进行有效的人工老练试验,尽量多的释放残余应力使其性能波动减至最小。
由于弹性元件在毛坯锻造、机械加工、热处理、表面打磨、电阻应变计粘贴和加压固化等工艺过程中产生各种残余应力,随着时间和使用条件的变化不断松弛释放,而造成测力传感器的性能波动,主要表现在零点和灵敏度不稳定。
为使测力传感器在生产过程中渡过初始不稳定期,采用工艺手段模拟各种使用条件进行试验,使其尽快稳定的工艺称为稳定性处理,也称人工老炼试验。测力传感器释放残余应力的稳定性处理方法,除制造工艺流程中常用的温度老化和电老化处理外,主要有两种方法,即热处理法和机械法。
1、热处理法
多应用于铝合金测力传感器,在毛坯加工成弹性元件后进行,主要有反淬火法、冷热循环法和恒温时效法。
(1) 反淬火法
国内也称深冷急热法。将铝合金弹性元件置于-196℃的液氮中,保温12小时后,迅速用新生的高速蒸汽喷射或放入沸水之中。因深冷与急热产生的应力方向相反而相互抵消,达到释放残余应力的目的。试验表明,采用液氮———高速蒸汽法可降低残余应力84%,采用液氮———沸水法可降低残余应力50%。
(2) 冷热循环法
冷热循环稳定性处理工艺为- 196℃×4小时/190℃×4小时,循环3次,可使残余应力下降90%左右,并且组织结构稳定,微量塑性变形抗力高,尺寸稳定性好。释放残余应力的效果如此明显,一是因为加热时原子热运动能量增加,点阵畸变减小或消失,内应力下降,上限温度越高,原子热运动越大塑性越好,越有利于残余应力释放。二是因为冷热温度梯度产生的热应力与残余应力相互作用,使其重新分布而获得残余应力下降的效果。
(3) 恒温时效法
恒温时效即可消除机械加工产生的残余应力,又能消除热处理引入的残余应力。LY12硬铝合金在200℃高温下恒温时效时,残余应力释放与时效时间关系表明,保温24小时,可使残余应力下降50%左右。
2、机械法
机械法稳定性处理,多在测力传感器电路补偿与调整和防护密封后,基本形成产品时进行。主要工艺有脉动疲劳法、超载静压法和振动时效法。
(1) 脉动疲劳法
将测力传感器安装在低频疲劳试验机上,施加上限为额定载荷或120%额定载荷,以每秒3~5次的频率进行5000~10000次的循环。可有效的释放弹性元件、电阻应变计、应变粘结剂胶层的残余应力,提高零点和灵敏度稳定性的效果极为明显。
(2) 超载静压法
理论上适用于各种量程,但在实际生产中以铝合金小量程测力传感器应用较多。
其工艺是:在专用的标准砝码加载装置中或简易的机械螺旋加载设备上,对测力传感器施加125%额定载荷,保持4~8小时,或施加110%额定载荷,保持24小时,两种工艺都可以达到释放残余应力,提高零点和灵敏度稳定性的目的。由于超载静压工艺所用设备简单,成本低,效果好,为铝合金测力传感器制造企业广泛采用。
(3) 振动时效 (Vibratory Sterss Reliering) 法
将测力传感器安装在额定正弦推力满足振动时效要求的振动台上,根据称重传感器的额定量程估算频率,来决定施加的振动载荷、工作频率和振动时间。共振时效比振动时效释放残余应力的效果更好,但必须测量出测力传感器的固有频率。振动时效和共振时效工艺的特点是:能耗低,周期短,效果好,不损坏弹性元件表面,而且操作简单。振动时效的机理,目前尚无定论。国外专家提出的理论和观点有:塑性变形理论、疲劳理论、晶格错位滑移理论、能量观点及材料力学观点等。只是作出了不同程度的解释,但都没有充分的、有说服力的、权威性的试验证明。
这些理论和观点往往是相互交叉的,所以可认为振动时效的机理是一个复杂的过程。经过振动时效的试验研究,有些专家倾向于用材料力学的重复应力过载的观点,解释振动时效的机理。即作用在弹性元件上的振动应力与其内部的残余应力相互作用,使残余应力松弛并释放。