更新时间:2022-08-26 10:27
电荷群一词早已出现,在很多教材和学术论文中都有使用。
在电磁学里,电荷(英语:electric charge)是物质的一种物理性质。称带有电荷的物质为“带电物质”。两个带电物质之间会互相施加作用力于对方,也会感受到对方施加的作用力,所涉及的作用力遵守库仑定律。电荷分为两种,“正电荷”与“负电荷”。带有正电荷的物质称为“带正电”;带有负电荷的物质称为“带负电”。假若两个物质都带有正电或都带有负电,则称这两个物质“同电性”,否则称这两个物质“异电性”。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。
电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为“带电粒子”。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁相互作用。这是四种基本相互作用中的一种。
主条目:电荷量
电荷的量称为“电荷量”。在国际单位制里,电荷量的符号以Q为表示,单位是库伦(C)。研究带电物质相互作用的经典学术领域称为经典电动力学。假若量子效应可以被忽略,则经典电动力学能够很正确地描述出带电物质在电磁方面的物理行为。
二十世纪初,著名的油滴实验证实电荷具有量子性质,也就是说,电荷是由一堆称为基本电荷的单独小单位组成的。基本电荷以符号e标记,大约带有电荷量(电量)1.602×10-19库仑。夸克是个例外,所带有的电量为e/3的倍数。质子带有电荷量e;电子带有电荷量-e。研究带电粒子与它们之间由光子媒介的相互作用的学术领域称为量子电动力学。
假设在平衡状况,某物体的总电量不等于零,也就是说,这物体带有正电荷或负电荷,则称此物体带有静电。这方面的问题属于静电学领域。琥珀在经过用猫毛摩擦后,能够吸引轻小物体,这现象称为的静电现象。这是负电荷从猫毛转移到琥珀后,所呈现的电性。当两个处于电势不相等的物体相互接触在一起,就会发生另外一种静电现象,称为静电放电,使得一个物体的电荷流动至另一个物体,从而促成电势相等。雷电是一种比较剧烈的静电放电。在大自然中,因为云层累积的正负电荷剧烈中和,会产生雷电和其所伴随的电光、雷声、热量。
一个正电荷与其电场线
一个负电荷与其电场线
带电粒子时常被称为电荷,但电荷本身并非粒子,只是为了方便描述,可以将它想像成粒子。带电量多者称为具有较多电荷。处于一外电场的带电粒子,其所感受到的外电场的库仑力相依于其带电量。
点电荷是带电粒子的理想模型。真正的点电荷并不存在,只有当带电粒子之间的距离超大于粒子的尺寸,或是带电粒子的形状与大小对于彼此相互施加的作用力的影响能够被忽略时,可称此带电体为“点电荷”。
一个实际带电体能否视为点电荷,不仅与带电体本身有关,还取决于问题的性质和精确度的要求。点电荷是建立基本规律时必要的抽象概念,也是分析复杂问题时不可少的分析手段。例如,库仑定律、劳仑兹力定律的建立,带电体所产生的电场以及几个带电体之间彼此相互作用的定量研究,试验电荷的引入等等,都应用了点电荷的观念。
有时候,虽然物体的总电量等于零,电荷分布可能会不均匀(例如,因为存在着外电场)。对于这状况,这物质称为电极化物质。束缚电荷是由于电极化而出现的电荷,束缚于原子内部。与束缚电荷明显不同,自由电荷是从外部置入的额外的电荷,不被束缚于原子内部。带电粒子朝着某方向的运动形成了电流,特别是在金属内部运动的电子。
在粒子物理学中,许多粒子都带有电荷。电荷在粒子物理学中是一个相加性量子数,电荷守恒定律也适用于粒子,反应前粒子的电荷之和等于反应后粒子的电荷之和,这对于强相互作用、弱相互作用、电磁相互作用都是严格成立的。
反粒子带有的电荷与对应粒子带有的电荷,电量相同,电性相异。夸克带有非整数电荷,不是-e/3,就是2e/3;但是科学家从未观察到单独夸克的存在(这事实可以用渐近自由(Asymptotic freedom)的理论来解释)。
电荷-宇称-时间对称(CPT-symmetry)对于粒子和反粒子的相对特性设下了强烈的约束。因此,可以严格地测试这理论。例如,质子和反质子的电荷的总和必须正好等于零。这全等式的精确度已经作实验测试至10分之一。使用潘宁阱(Penning trap)来囚禁反质子,质子和反质子的电荷质量比相等性质的精确度也被测试至6×109分之一。
一个由中国科学院国家天文台和高能物理所研究人员组成的研究小组(包括冯波、李明哲、夏俊卿、陈学雷、张新民),提出了一种用宇宙微波背景辐射偏振检验CPT对称性的新方法,并获得重要成果发现电荷-宇称-时间反演(CPT)对称性破缺迹象。这一结果发表在国际物理界的权威杂志《物理评论快报》(Issue 9 June 2006)上,美国物理协会周刊Physical Review Focus为此作了专题报道。
给予两个电量分别为、,位置分别为、的点电荷。根据库仑定律的大小与方向,以方程表达为
。
2008 年以前遇见“电荷群”一词,很容易地直接从字面的意义上理解应当是一群电荷。2008 年开始,有人为了方便指明一类研究对象。也使用了电荷群一词。电量绝对值相等且数量相等的异号点电荷混合,正电荷与负电荷不重合。这些点电荷在空间中聚集形成的群体被称为电荷群。
研究电荷群带来的好处有:
给我们崭新的研究微观物质的方法。把微观物质看作电荷群后能够理解强相互作用和弱相互作用的成因。能够找到一种形成普朗克常数的原因。
重新理解分子间力。极性分子和非极性分子的各种组合中都有“取向力”。前提是“取向力”一词不仅针对电偶极,也针对电多极。
再一次重新理解万有引力。包括天体在内的宏观物体都是电荷群。电荷群之间因存在“取向力”必有相互吸引作用。这个作用是万有引力中的一部分还是全部有待研究。