石墨炉原子化器

更新时间:2024-06-13 15:02

火焰原子化器应用最为广泛的一种,1959年苏联物理学家G.B.利沃夫首先将原子发射光谱法中石墨炉蒸发的原理用于原子吸收光谱法中,开创了无焰原子化方式。由于原子化效率高,石墨炉法的相对灵敏度高,最适合痕量分析。为改进石墨炉性能,提高抗干扰能力,正在开发以贵重金属做衬里和涂层的新石墨炉。石墨炉原子化器主要由炉体、石墨管和电、水、气供给系统组成。

原理

石墨炉原子化器是一个电加热器,利用电能加热盛放试样的石墨容器,使之达 到髙温以实现试样溶液中被测元素形成基态原子。

结构

管式石墨原子化器由加热电源、石墨管、炉体三部分组成。

加热电源

加热电源供给原子化器能量,一般采用低压、大电流的交流电。为保证炉温恒定,要求提供的电流稳定。炉温可在1~2s内达3000°C。

石墨管

由致密石墨制成,有两种形状:一种是沟纹型,用于有机溶液,取样可达50μm;一种是广泛应用的标准型,长约28mm,内径8mm,管中央开一孔,用于注入试样合适保护气体通过。试样用微量注射器直接由进样孔注人石墨管中,通过铜电极向石墨管供电。石 墨管作为电阻发热体,通 电 后 可 达 到 2000 ~ 3000高温,以蒸发试样和使试样原子化。

炉体

包括石墨管座、电源插座、水冷却外套、石英窗和内外保护气路。常用保护气为氩气。外气路中氩气沿石墨炉外壁流动,以保护石墨炉管不被烧蚀。内气路中的氩气从管两端流向中心,由管中心孔流出,以有效地除去在干燥和灰化过程中所产生的基体蒸汽,同时保护已原子化了的原子不再被氧化。在灰化阶段,停止通气,以延长原子在吸收区内的平均停留时间。以免对原子蒸气的稀释。水冷却套是为了保护炉体,确保切断电源后20~30s,炉子降至室温。

操作程序

使用石墨炉时一般采取程序升温的方式,即先通小电流,在100°C左右进行试样的干燥,主要目的是除去溶剂和水分。通常在100~1800°C进行灰化,以除去基体或其它元素对其干扰。然后再升温进行试样原子化,温度根据需要选定,最高可达3000°C.测定后将石墨炉加高温空烧一段时间将前一实验余留的待测元素挥发掉,以减小该实验对下次实验的产生的记忆,这一过程称为高温除残。

优点

石墨炉原子化在充有惰性保护气的气室 内,在强还原性石墨介质中进行,有利于难溶 氧化物的原子化;可不经过前处理直接进行分 析 ,适于生物试样的分析;原子化效率(atomization efficiency )

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}