更新时间:2022-08-25 15:14
磁性地层学(magnetostratigraphy)是地层学的一个分支学科,是古地磁学在地层学中的具体应用。通过岩石天然剩余磁性的测定,求出地磁场的极性变化来研究地层。与现在地磁场方向一致的极性为正向,方向相反的为反向,在整个地史中把正向和反向按先后顺序排列起来,即成地磁极性年表。从第四纪前推到新近纪后期(最近450万年间)的地磁场倒转表,按顺序已划出4个极性时:布容正向极性时、松山反向极性时、高斯正向极性时、吉尔伯特反向极性时。
一个磁性地层极性单位称为磁性地层极性带,以极性反转面或极性过渡带作为界线。磁性地层单位又可分为不同的级别。这一新兴学科已得到迅速发展,经过进一步深入研究,定能在地层学研究中发挥重要作用。
从地磁场起源的自激发电机理论推知,地核中流动着的电流逆向时,就会导致地磁场极性发生倒转。当地球表面上一点磁场方向指向北时,则极行是正向的,磁针在北半球指向下,在南半球指向上;如果极性是负向的,则地球表面上一点的磁场方向指向南,其磁倾角的正负符号与前恰好相反。岩石中保留的原生剩余磁性方向,就是岩石形成时期地磁场方向。测得的结果表明:在过去漫长的地质时期中,地磁场极性倒转出现过多次;极性倒转的发生,具有同时性和全球性的特征。因此,可根据地层剖面中岩石剩余磁性的极性变化,对地层进行划分与对比,并获得古地磁极位置、古纬度等信息,以探讨地层形成的地理位置。
它是磁性地层学研究的中心内容,又是进行磁性地层工作的标尺之一。1963年,A.V.考克斯首先把钾-氩同位素年龄测定法引入古地磁学研究中。1969年,他又综合编制出距今450万年以来的地磁场极性倒转序列(图1)。当时,人们把数量级106年的极性时间称为期,以过去曾经对地磁学研究有过贡献的学者名字来命名,如布容正向极性期、松山反向极性期、高斯正向极性期和吉伯反向极性期。在期之内,还有一些数量级可达到1~10万年、且与该期持相反极性的时间称为事件,它是以最早发现这种极性的岩石地点来命名的,例如松山反向极性期中的奥都威正向极性事件和留尼昂正向极性事件等。国际地层委员会为了推动磁性地层学的发展和确立磁性地层极性单位的术语,于1972年成立了地磁极性年代表分委员会,该分委员会第一次会议上正式地认可了上述地磁极性年代表。1979年,E.A.曼基南等根据新的钾-氩衰变常数校准值,对这个极性年代表作了修正,很快地被各国学者公认和运用。此外,由于期和事件之类术语存在一些弊病,现今的《国际地层指南》(1979)中将它们废弃,并建议把期 (epoch)改用时(chron)、事件(event)改用亚时(subchron)。迄今,地质时期地磁极性年代表还只有从全新世延续到中侏罗世卡洛期。至于编制整个显生宙和前寒武纪的地磁极性年代表,仍缺少必需的资料。
确立磁性地层极性单位,是磁性地层工作的基本内容。磁性地层极性单位的基本术语,是磁性地层极性带,其顶与底均以极性倒转面或极性倒转带为界线。通常,磁性地层极性单位有3种基本型式:①具有整体单一的极性方向的地层;②具有正向与负向交替变化的地层;③主要是正向或负向,其间又具有次一级的相反极性的地层。依照它们在地层剖面中的范围和重要性,磁性地层极性单位可以分成不同的级别,如极性微带,极性亚带、极性带、极性超带和极性巨带等(见表)。 磁性地层学
根据《国际地层指南》要求,确立一套极性单位必须提供如下的资料:①提议的名称及其定义;②极性单位的种类和级别;③历史背景;④层型及其他参考标准;⑤极性单位在典型地点的描述与分布范围;⑥区域概貌;⑦与其他一些单位对比;⑧地质年龄;⑨根据钻孔资料所要确立的极性单位特征;⑩必要的参考文献。
地质时期中已公认的极性超时(或超带),按其时间由晚到早的顺序共有:KTQ-M,白垩纪-第三纪-第四纪混合极性超时(或超带);K-N,白垩纪正向极性超时(或超带);JK-M,侏罗纪-白垩纪混合极性超时(或超带);PTr-M二叠纪-三叠纪混合极性超时(或超带);CP-R,石炭纪-二叠纪负向极性超时(或超带);C-M,石炭纪混合极性超时(或超带)