禁忌搜索

更新时间:2022-08-25 16:29

禁忌搜索(Tabu Search,TS,又称禁忌搜寻法)是一种现代启发式算法,由美国科罗拉多大学教授Fred Glover在1986年左右提出的,是一个用来跳脱局部最优解的搜索方法。其先创立一个初始化的方案;基于此,算法“移动”到一相邻的方案。经过许多连续的移动过程,提高解的质量。

基本介绍

迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。

针对局部邻域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大邻域搜索结构,如TSP的2opt扩展到k-opt;多点并行搜索,如进化计算;变结构邻域搜索( Mladenovic et al,1997);另外,就是采用TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。

禁忌搜索是人工智能的一种体现,是局部邻域搜索的一种扩展。禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。

示例

组合优化是TS算法应用最多的领域。置换问题,如TSP、调度问题等,是一大批组合优化问题的典型代表,在此用它来解释简单的禁忌搜索算法的思想和操作。对于 n元素的置换问题,其所有排列状态数为n!,当n较大时搜索空间的大小将是天文数字,而禁忌搜索则希望仅通过探索少数解来得到满意的优化解。

首先,对置换问题定义一种邻域搜索结构,如互换操作(SWAP),即随机交换两个点的位置,则每个状态的邻域解有Cn2=n(n一1)/2个。称从一个状态转移到其邻域中的另一个状态为一次移动(move),显然每次移动将导致适配值(反比于目标函数值)的变化。其次,我们采用一个存储结构来区分移动的属性,即是否为禁忌“对象”在以下示例中:考虑7元素的置换问题,并用每一状态的相应21个邻域解中最优的5次移动(对应最佳的5个适配值)作为候选解;为一定程度上防止迂回搜索,每个被采纳的移动在禁忌表中将滞留3步(即禁忌长度),即将移动在以下连续3步搜索中将被视为禁忌对象;需要指出的是,由于当前的禁忌对象对应状态的适配值可能很好,因此在算法中设置判断,若禁忌对象对应的适配值优于“ best so far”状态,则无视其禁忌属性而仍采纳其为当前选择,也就是通常所说的藐视准则(或称特赦准则)。

简单的禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中领域结构、候选解、禁忌长度、禁忌对象、藐视准则、终止准则等是影响禁忌搜索算法性能的关键。需要指出的是:

(1)由于TS是局部领域搜索的一种扩充,因此领域结构的设计很关键,它决定了当前解的领域解的产生形式和数目,以及各个解之间的关系。

(2)出于改善算法的优化时间性能的考虑,若领域结构决定了大量的领域解(尤其对大规模问题,如TSP的SWAP操作将产生Cn2个领域解),则可以仅尝试部分互换的结果,而候选解也仅取其中的少量最佳状态。

(3)禁忌长度是一个很重要的关键参数,它决定禁忌对象的任期,其大小直接进而影响整个算法的搜索进程和行为。同时,以上示例中,禁忌表中禁忌对象的替换是采用FIFO方式(不考虑藐视准则的作用),当然也可以采用其他方式,甚至是动态自适应的方式。

(4)藐视准则的设置是算法避免遗失优良状态,激励对优良状态的局部搜索,进而实现全局优化的关键步骤。

(5)对于非禁忌候选状态,算法无视它与当前状态的适配值的优劣关系,仅考虑它们中间的最佳状态为下一步决策,如此可实现对局部极小的突跳(是一种确定性策略)。

(6)为了使算法具有优良的优化性能或时间性能,必须设置一个合理的终止准则来结束整个搜索过程。

此外,在许多场合禁忌对象的被禁次数(frequency)也被用于指导搜索,以取得更大的搜索空间。禁忌次数越高,通常可认为出现循环搜索的概率越大。

算法流程

算法

给以禁忌表H= 并选定一个初始解x;满足停止规则时,停止计算,输出结果;否则,在x的邻域N(x)中选出满足不受禁忌的候选集Can_N(x);在Can_N(x)中选一个评价值最佳的解x1,x=x1;更新历史记录H,重复STEP2。

注意事项

不受禁忌的候选集包括两种,一种是那些没有被禁忌的元素,另一种是可以被解除禁忌的元素。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}