更新时间:2024-10-11 21:48
科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数),这种记数法叫做科学记数法。当我们要标记或运算某个较大或较小且位数较多的数时,用科学记数法免去浪费很多空间和时间。
科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数),这种记数法叫做科学记数法。例如:19971400000000=1.99714×10^13。计算器或电脑表达10的幂是一般是用E或e,也就是1.99714E13=19971400000000。
当我们要标记或运算某个较大或较小且位数较多时,用科学记数法免去浪费很多空间和时间。
科学记数法的形式是由两个数的乘积组成的。表示为a×10^b(aEb)
其中一个因数为a(1≤|a|<10),另一个因数为10^n。
用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已,可以方便的表示日常生活中遇到的一些极大或极小的数。如:光的速度大约是300,000,000米/秒;全世界人口数大约是:8,000,000,000.
这样的数,读、写都很不方便,我们可以免去写这么多重复的0,将其表现为这样的形式:6,100,000,000=6.1×10^9,
或:0.00001=1×10^-5,即绝对值小于1的数也可以用科学记数法表示为a乘10 的负n次方的形式。
若|x|>1,则记为 的形式, 的值由 的位数决定,m为x的位数,则 ,
若|x|<1,则 , ,其中m为x的位数,m1为x的有效数位。
运用科学记数法a×10^n的数字,它的精确度以a的最后一个数在原数中的数位为准。
如:
13600,精确到十位,记作:1.360X10^4
13200 ,精确到百位,记作:1.32X10^4
322000,精确到千位,记作:3.22X10^5
相关的表达形式
aEb=a×10^b
(1)3×10^4+4×10^4=7×10^4
即aEc±bEc=﹙a±b﹚Ec
(2)3E6×6E5=18E11=1.8E12
即aEM×bEN=abE(M+N)
(3)-6E4÷3E3=-2E1
即aEM÷bEN=a/bE(M-N)⑷
相关的一些推导
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
(aEc)^n=a^nEnc
a×10^logb=ab
aElogb=ab
即aEbEc=aEb+c
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aEb+c+d
得aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n-1)/2×d
aEna1+n(n+1)/2×d
等比n项和公式Sn=a1n(q=1)an=a1*q^n-1(q!=0 n>=2且q=1时,an为常数列)或 n(1-q^n)/1-q
aESn [Sn=a1n(q=1)或 n(1-q^n)/1-q(q≠1) ]
数列通项记数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^n-1
(3)aEb与aE-b
aEb=a×10^b
aE-b=a×10^-b 正负b决定E的方向
科学记数意义
aEb=c a=c/Eb
Excel中设置科学记数格式
在Microsoft Excel软件中可以将单元格中的数值型数据设置成科学记数格式,以Excel 2010为例介绍设置方法:
第1步,打开Excel2010工作表窗口,选中需要设置科学记数格式的单元格。右键单击选中的单元格,在打开的快捷菜单中选择“设置单元格格式”命令示。
第2步,在打开的Excel2010“设置单元格格式”对话框,切换到“数字”选项卡。在“分类”列表中选择“科学记数”选项,并在右侧的“小数位数”微调框中设置小数位数。设置完毕单击“确定”按钮。