积分关系法

更新时间:2024-06-14 16:17

积分关系法:直线法和积分关系法都具有结构简单、机器存储量小和运算时间省的优点。缺点是,当近似常微分方程组阶数很高或出现奇点时,常会出现计算不稳定问题。

概述

积分关系法是1951年A. A. 多罗德尼岑提出的,是直线法的另一个主要发展。它被用于求解空气动力学问题。该法是从守恒型偏微分方程出发,先按某一变量求积,获得一组积分关系式,再用适当的内插公式代替积分关系式中的被积函数,最后导出近似常微分方程组。由于积分后的函数比被积函数更光滑,当被积函数有第一类间断点时,积分仍能给出连续的表达式。因此,当流场中出现间断面时,积分关系法仍能保持物理量的守恒关系,而普通直线法则不能做到这一点。此法曾被用来求解钝头旋转体高速飞行时的绕流问题并获得了成功。为使积分关系法也能适用于边界层的计算,1960年多罗德尼岑还提出广义积分关系法。该法用逐段连续的“权函数”去乘原始方程组中的每一个方程并进行积分。对梯度变化较大的被积函数,可选择适当的权函数加以“平滑”。这样,就能以低级近似来获得高精度的数值解。

直线法和积分关系法都具有结构简单、机器存储量小和运算时间省的优点。缺点是,当近似常微分方程组阶数很高或出现奇点时,常会出现计算不稳定问题。直线法和积分关系法既可用于求解线性的,也可求解非线性的抛物型、双曲型、椭圆型和混合型偏微分方程,甚至还可用于求解微分-积分方程。因此,它们在弹性力学、流体力学、物理-化学流体动力学和数学物理的其他问题中都有广泛的应用。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}