更新时间:2024-02-11 19:23
由总框架、两个微型电机和数块阳光收集片组成,装置总框架固定不动,电机只调整每块阳光收集片的姿态,并将阳光反射聚焦到目标上,它抗风强,采光面积大(面积可达10平方米以上);它是一种全自动装置,采光效率高;使用方便:焦点可根据需要而定,焦点能设置在阳光下也可以设置在阴凉处,焦点可以设置在几米以内,也可以放置到百米以外。它可以用来:烧水、做饭、采光、采暖,还能为太阳能空调提供能源,为太阳能发电厂提供能源,建造光伏发电电站也具有极高的效率。它能全天自动跟踪太阳,接收太阳能量效率高、可作多种用途的多平面聚焦阳光收集器。
随着微工程特别是光纤通信的迅猛发展对微小光学器件有巨大需求,微小光学(Microoptics)就是在此背景下发展起来的。本文简单介绍了自聚焦平面微透镜阵列研制的历史背景、巨大的应用价值及光刻离子交换工艺制作。在给出了变折射率透镜元件的折射率分布公式以后。
众所周知,传统光学元器件的尺寸一般都较大,通常都在毫米量级及以上。例如,采用玻璃冷加工技术制作的透镜、棱镜,由于工艺的限制,直径都在1毫米以上,制作直径更小的(如几十微米)透镜,这种工艺一般是不可能的。为了制作微型透镜,就不能采用传统的机械加工方法,而必须采用新发展起来的光学微加工方法。1969年,日本的北野一郎等人,采用离子交换工艺制作出一种新型透镜——径向变折射率透镜(即自聚焦透镜),自聚焦透镜的出现,是高科技高速发展的必然,是发展先进生产力的急需。
由于自聚焦透镜具有短焦距、大数值孔径、小尺寸、高分辨率和使用方便等特点,在光信息传输、光信息处理、光纤传感和光计算技术中有广泛应用。而且极大地促进了微工程特别是微小光学的迅猛发展。随着科学技术的发展,特别是光信息技术的发展,要求充分发挥光信息的“并行性”这一重要特点,就需要采用密集、规则排列的、光性均匀的微透镜阵列,于是,光学元器件的微小化、阵列化、集成化就成为微小光学元器件发展的重要方向和当今高科技的重要发展前沿之一。自聚焦平面微透镜阵列的研制成功,使变折射率透镜从分立元件发展到面阵列元件,促进了微光学器件、导波器件、集成光子学器件的阵列化、微型化和轻量化。由于自聚焦平面微透镜阵列本身具有微小、阵列、变折和掩埋(透镜位于基片内部)等特点,就体现了集成光学和微小光学等多学科交叉的特点
微透镜阵列的研制和应用,最早可以追溯到上世纪初李普曼提出的“猫眼透镜板集成照相术”,这是采用机械雕刻技术制成的,尺寸在毫米量级,但是小尺寸人工雕刻是十分困难的。1980年,为了研制网格高速摄影机结构中柱状透镜阵列,有人曾想采用直径0.5mm的自聚焦透镜,通过机械排列方法而构成透镜阵列,该方法虽可作出微透镜阵列,但透镜阵列的排列精度不高,排列工艺也很困难,而且光性均匀性也很难得到保证。微透镜阵列的发展,主要是在20世纪80年代,在微电子技术基础上,光学微加工技术有了迅速发展,出现了一系列制作微透镜阵列的新工艺。按照成象原理不同,微透镜阵列可分为折射型和衍射型两大类。折射型微透镜阵列制作的主要工艺有:光刻离子交换工艺;光敏热处理工艺;光刻热成形工艺;离子束刻蚀等。衍射型微透镜阵列主要有菲涅尔透镜、全息透镜以及在此基础上发展起来的二元光学等该论文中,我们关心的是采用光刻离子交换工艺制作的自聚焦平面微透镜阵列。目前,可以制出直径只有几微米的半球形自聚焦平面透镜阵列,而且还可以制作球形自聚焦平面透镜阵列。二自聚焦平面微透镜的折射率分布在微小光学领域,光学元件的折射率是一个十分重要的物理量,这是因为折射率分布不仅与自聚焦平面微透镜的光学性能有密切关系,而且也是指导制作工艺的一个重要依据。