背照式

更新时间:2022-08-25 16:20

背照式一词源于数码相机技术,所谓背照式CMOS就是将它掉转方向,让光线首先进入感光二极管,与起先的感光二极管位于电路晶体管后方的位置相反,从而增大感光量,显著提高低光照条件下的拍摄效果。

定义

在传统CMOS感光元件中,感光二极管位于电路晶体管后方,进光量会因遮挡受到影响。索尼的背照式CMOS传感器商品名称为Exmor R,首先在DV摄像机中得到应用。

Exmor R CMOS背面照明技术感光元件,改善了传统CMOS感光元件的感光度。Exmor R CMOS采用了和普通方法相反、向没有布线层的一面照射光线的背面照射技术,由于不受金属线路和晶体管的阻碍,开口率(光电转换部分在一个像素中所占的面积比例)可提高至近100%。与其以往1.75μm间隔的表面照射产品相比,背面照射产品在灵敏度(S/N)上具有很大优势。

优势

传统的CMOS传感器每个像素点都要搭配一个对应的A/D转换器以及对应的放大电路,因此,这部分电路会占用更多的像素面积,直接导致光电二极管实际感光的面积变小,感光能力变弱。CCD的单个像素点不需要A/D转换器和放大电路,光电二极管能获得更大的实际感光面积,开口率更大,因此在小尺寸影像传感器领域,CCD仍占据一定优势,而在大尺寸影像传感器领域,由于单个像素点的面积大,A/D转换器和放大电路占用的面积只是整个像素的很小一部分,影响不大,因此CMOS传感器也得到了广泛的应用。 而Exmor R CMOS将光电二极管“放置”在了影像传感器芯片的最上层,把A/D转换器及放大电路挪到了影像传感器芯片的“背面”,而不是像传统CMOS传感器一样,A/D转换器和放大电路位于光电二极管的上层,“挡住了”一部分光线。这样一来,通过微透镜和色彩滤镜进来的光线就可以最大限度地被光电二极管利用,开口率得以大幅度提高,即便是小尺寸的影像传感器,也能获得优良的高感光度能力。

相比较之下,传统的表面照射型CMOS传感器的光电二极管位于整个芯片的最下层,而A/D转换器和放大电路位于光电二极管上层,因此光电二极管离透镜的距离更远,光线更容易损失。同时,这些线路连接层还会阻塞从色彩滤镜到达光电二极管的光路,因此直接导致实际能够感光更少。而Exmor R背照式CMOS传感器解决了这样的问题。

相关研究

随着CMOS工艺水平的提高与诸多技术瓶颈的解决CMOS图像传感器凭借低功耗、低成本、小体积、可随机读取等一系列优点,在平板电脑、智能手机等智能终端实现了广泛应用。其中,背照式图像传感器正是帮助CMOS图像传感器实现广泛应用的主要力量。背照式图像传感器不仅消除了早期CMOS传感器噪声较大的问题,且大幅改善了像素单元感光能力的先天不足,使得背照式像素成为CMOS图像传感器的主流。但随着工艺尺寸与像素尺寸缩小,背照式CIS的发展遇到了新的问题。本课题即从优化像素结构的角度,针对背照式CIS亟待解决的满阱容量不足及严重的电学串扰问题进行研究,使其从基础上突破CIS的技术瓶颈。为改善小尺寸背照式CMOS图像传感器像素满阱容量不足的缺点,本文基于提高光电二极管电容的角度,提出了一种通过改变光电二极管结构来提升满阱容量的新方法。在新结构中,光生电子被存储在传统N埋层与延展的N埋层中,并由一个沿纵向插入的P型层帮助增加的电子实现全耗尽,该结构可实现阱容量的有效扩展。

为改善背照式像素电学串扰问题,建立了小尺寸背面照射像素间的串扰物理模型,提出了一种应用于背照式像素的防串扰结构。该结构基于正面照射像素隔离原理,在相邻像素间器件层背面插入沟槽隔离区域。仿真结果显示,短波串扰构成了背照式像素中最为严重的串扰源;相邻像素经该结构优化后,可有效隔离背表面中短波串扰电荷;当沟槽深为3μm时,相邻像素串扰量可由32.73%降至8.76%;当沟槽深为4μm时,相邻像素可实现电学串扰的完全抑制。此外,量子效率也会因该结构的使用而得到相应改善。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}